拿 C# 搞函数式编程 - 2
前一阵子在写 CPU,导致一直没有什么时间去做其他的事情,现在好不容易做完闲下来了,我又可以水文章了哈哈哈哈哈。
有关 FP 的类型部分我打算放到明年再讲,因为现有的 C# 虽然有一个 pattern matching expressions
,但是没有 discriminated unions
和 records
,只能说是个半残废,要实现 FP 那一套的类型异常的复杂。西卡西,discriminated unions
和 records
这两个东西官方已经定到 C# 9 了,所以等明年 C# 9 发布了之后我再继续说这部分的内容。
另外,concepts
(type classes
)、traits
、intersect & sum types
和高阶类型也可能会随着 C# 9、10 一并到来。因此到时候再讲才会讲得更爽。另外吹一波 traits
类型系统,同样是图灵完备的类型系统,在表达力上要比OOP
强太多,欢迎大家入坑,比如 Rust 和未来的 C#。
这一部分我们介绍一下 Functor
、Applicative
和 Monad
都是些什么。
本文试图直观地讲,目的是让读者能比较容易的理解,而不是准确知道其概念如何,因此会尽量避免使用一些专用的术语,如范畴学、数学、λ 计算等等里面的东西。感兴趣的话建议参考其他更专业的资料。
Functor
Functor 也叫做函子。想象一下这样一件事情:
现在我们有一个纯函数 IsOdd
bool IsOdd(int value) => (value & 1) == 1; 这个纯函数只干一件事情:判断输入是不是奇数。 那么现在问题来了,如果我们有一个整数列表,要怎么去做上面这件事情呢? 可能会有人说这太简单了,这样就可: var list = new List<int>(); return list.Select(IsOdd).ToList(); 上面这句干了件什么事情呢?其实就是:我们将 IsOdd 函数应用到了列表中的每一个元素上,将产生的新的列表返回。 现在我们做一次抽象,我们将这个列表想象成一个箱子M,那么我们的需要干的事情就是:把一个装着 A 类型东西的箱子变成一个装着 B 类型东西的箱子(A、B类型可相同),即 fmap函数,而做这个变化的方法就是:进入箱子M,把里面的A变成B。 它分别接收一个把东西从A变成B的函数、一个装着A的M,产生一个装着B的M。 M<B> Fmap(this M<A> input, Func<A, B> func); 你暂且可以简单地认为,判断一个箱子是不是 Functor,就是判断它有没有 fmap这个操作。 Maybe 我们应该都接触过 C# 的 Nullable<T>类型,比如 Nullable<int> t,或者写成 int? t,这个t,当里面的值为 null 时,它为 null,否则他为包含的值。 此时我们把这个 Nullable<T>想象成这个箱子 M。那么我们可以这么说,这个M有两种形式,一种是 Just<T>,表示有值,且值在 Just 里面存放;另一种是 Nothing,表示没有值。 用 Haskell 写这个Nullable<T>类型定义的话,大概长这个样子: data Nullable x = Just x | Nothing 而之所以这个Nullable<T>既可能是 Nothing,又可能是 Just<T>,只是因为 C# 的 BCL 中包含相关的隐式转换而已。 由于自带的 Nullable<T>不太好具体讲我们的各种实现,且只接受值类型的数据,因此我们自己实现一个Maybe<T>: public class Maybe<T> where T : notnull { private readonly T innerValue; public bool HasValue { get; } = false; public T Value => HasValue ? innerValue : throw new InvalidOperationException(); public Maybe(T value) { if (value is null) return; innerValue = value; HasValue = true; } public Maybe(Maybe<T> value) { if (!value.HasValue) return; innerValue = value.Value; HasValue = true; } private Maybe() { } public static implicit operator Maybe<T>(T value) => new Maybe<T>(value); public static Maybe<T> Nothing() => new Maybe<T>(); public override string ToString() => HasValue ? Value.ToString() : "Nothing"; } 对于 Maybe<T>,我们可以写一下它的 fmap函数: public static Maybe<B> Fmap<A, B>(this Maybe<A> input, Func<A, B> func) => input switch { null => Maybe<B>.Nothing(), { HasValue: true } => new Maybe<B>(func(input.Value)), _ => Maybe<B>.Nothing() }; Maybe<int> t1 = 7; Maybe<int> t2 = Maybe<int>.Nothing(); Func<int, bool> func = x => (x & 1) == 1; t1.Fmap(func); // Just True t2.Fmap(func); // Nothing
Applicative
有了上面的东西,现在我们说说 Applicative
是干什么的。
你可以非常容易的发现,如果你为 Maybe<T>
实现一个 fmap,那么你可以说 Maybe<T>
就是一个 Functor
。
那 Applicative
也差不多,首先Applicative
是继承自Functor
的,所以Applicative
本身就具有了 fmap
。另外在 Applicative
中,我们有两个分别叫做pure
和 apply
的函数。
pure
干的事情很简单,就是把东西装到箱子里:
M<T> Pure<T>(T input); 那 apply 干了件什么事情呢?想象一下这件事情,此时我们把之前所说的那个用于变换的函数(Func<A, B>)也装到了箱子当中,变成了M<Func<A, B>>,那么apply所做的就是下面这件事情: M<B> Apply(this M<A> input, M<Func<A, B>> func); 看起来和 fmap没有太大的区别,唯一的不同就是我们把func也装到了箱子M里面。 以 Maybe<T>为例实现 apply: public static Maybe<B> Apply<A, B>(this Maybe<A> input, Maybe<Func<A, B>> func) => (input, func) switch { _ when input is null || func is null => Maybe<B>.Nothing(), ({ HasValue: true }, { HasValue: true }) => new Maybe<B>(func.Value(input.Value)), _ => Maybe<B>.Nothing() }; 然后我们就可以干这件事情了: Maybe<int> input = 3; Maybe<Func<int, bool>> isOdd = new Func<int, bool>(x => (x & 1) == 1); input.Apply(isOdd); // Just True 我们的这个函数 isOdd本身可能是 Nothing,当 input和isOdd任何一个为Nothing的时候,结果都是Nothing,否则是Just,并且将值存到这个 Just里面。 Monad Monad 继承自 Applicative,并另外包含几个额外的操作:returns、bind和then。 returns干的事情和上面的Applicative中pure干的事情没有区别。 public static Maybe<A> Returns<A>(this A input) => new Maybe<A>(input); bind干这么一件事情 : M<B> Bind<A, B>(this M<A> input, Func<A, M<B>> func); 它用一个装在 M中的A,和一个A -> M<B>这样的函数,产生一个M<B>。 then用来充当胶水的作用,将一个个操作连接起来: M<B> Then(this M<A> a, M<B> b); 为什么说这是充当胶水的作用呢?想象一下如果我们有两个 Monad,那么使用 then,就可以将上一个 Monad和下一个Monad利用函数组合起来将其连接,而不是写为两行语句。 实现以上操作: public static Maybe<B> Bind<A, B>(this Maybe<A> input, Func<A, Maybe<B>> func) => input switch { { HasValue: true } => func(input.Value), _ => Maybe<B>.Nothing() }; public static Maybe<B> Then<A, B>(this Maybe<A> input, Maybe<B> next) => next;
完整Maybe<T>
实现
public class Maybe<T> where T : notnull { private readonly T innerValue; public bool HasValue { get; } = false; public T Value => HasValue ? innerValue : throw new InvalidOperationException(); public Maybe(T value) { if (value is null) return; innerValue = value; HasValue = true; } public Maybe(Maybe<T> value) { if (!value.HasValue) return; innerValue = value.Value; HasValue = true; } private Maybe() { } public static implicit operator Maybe<T>(T value) => new Maybe<T>(value); public static Maybe<T> Nothing() => new Maybe<T>(); public override string ToString() => HasValue ? Value.ToString() : "Nothing"; } public static class MaybeExtensions { public static Maybe<B> Fmap<A, B>(this Maybe<A> input, Func<A, B> func) => input switch { null => Maybe<B>.Nothing(), { HasValue: true } => new Maybe<B>(func(input.Value)), _ => Maybe<B>.Nothing() }; public static Maybe<B> Apply<A, B>(this Maybe<A> input, Maybe<Func<A, B>> func) => (input, func) switch { _ when input is null || func is null => Maybe<B>.Nothing(), ({ HasValue: true }, { HasValue: true }) => new Maybe<B>(func.Value(input.Value)), _ => Maybe<B>.Nothing() }; public static Maybe<A> Returns<A>(this A input) => new Maybe<A>(input); public static Maybe<B> Bind<A, B>(this Maybe<A> input, Func<A, Maybe<B>> func) => input switch { { HasValue: true } => func(input.Value), _ => Maybe<B>.Nothing() }; public static Maybe<B> Then<A, B>(this Maybe<A> input, Maybe<B> next) => next; }
以上方法可以自行柯里化后使用,以及我调换了一些参数顺序便于使用,所以可能和定义有所出入。
有哪些常见的 Monads
- Maybe
- Either
- Try
- Reader
- Writer
- State
- IO
- List
- ......
C# 中有哪些 Monads
Task<T>
Nullable<T>
IEnumerable<T>
+SelectMany
- ......
为什么需要 Monads
想象一下,现在世界上只有一种函数:纯函数。它接收一个参数,并且对于每一个参数值,给出固定的返回值,即 f(x)
对于相同参数恒不变。
那现在问题来了,如果我需要可空的值 Maybe
或者随机数Random
等等,前者除了值本身之外,还带有一个是否有值的状态,而后者还跟计算机的运行环境、时间等随机数种子的因素有关。如果我们所有的函数都是纯函数,那么我们如何用一个函数去产生 Maybe
和 Random
呢?
前者可能只需要给函数增加一个参数:是否有值,然而后者呢?牵扯到时间、硬件、环境等等一切和产生随机数种子有关的状态,我们当然可以将所有状态都当作参数传入,然后生成一个随机数,那更复杂的,IO
如何处理?
这类函数都是与环境和状态密切相关的,状态是可变的,并不能简单的由参数做映射产生固定的结果,即这类函数具有副作用。但是,我们可以将状态和值打包起来装在箱子里,这个箱子即 Monad
,这样我们所有涉及到副作用的操作都可以在这个箱子内部完成,将可变的状态隔离在其中,而对外则为一个单体,仍然保持了其不变性。
以随机数 Random
为例,我们想给随机数加 1。(下面的代码我就用 Haskell 放飞自我了)
我们现在已经有两个函数,nextRandom
用于产生一个 Random Int
,plusOne
用于给一个 Int
加 1:
nextRandom :: Random Int // 返回值类型为 Random Int plusOne :: Int -> Int // 参数类型为 Int,返回值类型为 Int 然后我们有 bind和returns操作,那我们只需要利用着两个操作将我们已有的两个函数组合即可: bind (nextRandom (returns plusOne)) 利用符号表示即为: nextRandom >>= plusOne 这样我们将状态等带有副作用的操作全部隔离在了 Monad 中,我们接触到的东西都是不变的,并且满足 f(g(x)) = g(f(x))! 当然这个例子使用Monad的bind操作纯属小题大做,此例子中只需要利用Functor的 fmap操作能搞定: fmap plusOne nextRandom 利用符号表示即为: plusOne <$> nextRandom