深入 JavaScript 原型继承原理——babel 编译码解读

在[上一篇文章][]中,我们提到 ES6 的 class 语法糖是个近乎完美的方案,并且讲解了实现继承的许多内部机制,如 prototype/__proto__/constructor 等等。这篇,我们就以实际的 babel 代码为例子,来验证上节所言不虚。此外,本文还解释了 React 组件中你需要 bind 一下类方法的原理所在。

目录

  • 无继承——简单的 class + 字段声明
  • 无继承——简单的 class + 方法声明
  • 简单继承——一层继承 + 字段覆盖
  • 无继承——静态函数
  • 无继承——静态变量
  • 神秘的类 arrow function

无继承——简单的 class + 字段声明

先来看个最简单的例子,我们仅仅使用了 class 关键字并定义了一个变量:

class Animal {
  constructor(name) {
    this.name = name || 'Kat'
  }
}

最后 babel 编译出来的代码如下。这里笔者用的是 Babel 6 的稳定版 6.26,不同版本编译出来可能有差异,但不至于有大的结构变动。

'use strict'

function _classCallCheck(instance, Constructor) {
  if (!(instance instanceof Constructor)) {
    throw new TypeError('Cannot call a class as a function')
  }
}

var Animal = function Animal(name) {
  _classCallCheck(this, Animal)

  this.name = name || 'Kat'
}

确实十分简单,对吧。这段代码值得留意的点有两个:

一个是,使用 class 声明的 Animal 最后其实是被编译为一个函数。证明 class 跟类没关系,只是个语法糖。

另一个地方是,编译器帮我们插入了一个 _classCallCheck 函数调用,它会检查你有没有用 new Animal() 操作符来初始化这个函数。若有,则 this 会是被实例化的 Animal 对象,自然能通过 animal instanceof Animal 检查;若是直接调用函数,this 会被初始化为全局对象,自然不会是 Animal 实例,从而抛出运行时错误。这个检查,正解决了[上一篇文章][]提到的问题:如果忘记使用 new 去调用一个被设计构造函数的函数,没有任何运行时错误的毛病。

无继承——简单的 class + 方法声明

让我们再扩展一下例子,给它加两个方法。

class Animal {
  constructor(name) {
    this.name = name || 'Kat'
  }

  move() {}
  getName() {
    return this.name
  }
}
'use strict'

var _createClass = (function() {
  function defineProperties(target, props) {
    for (var i = 0; i < props.length; i++) {
      var descriptor = props[i]
      descriptor.enumerable = descriptor.enumerable || false
      descriptor.configurable = true
      if ('value' in descriptor) descriptor.writable = true
      Object.defineProperty(target, descriptor.key, descriptor)
    }
  }
  return function(Constructor, protoProps, staticProps) {
    if (protoProps) defineProperties(Constructor.prototype, protoProps)
    if (staticProps) defineProperties(Constructor, staticProps)
    return Constructor
  }
})()

function _classCallCheck(instance, Constructor) {
  if (!(instance instanceof Constructor)) {
    throw new TypeError('Cannot call a class as a function')
  }
}

var Animal = (function() {
  function Animal(name) {
    _classCallCheck(this, Animal)

    this.name = name || 'Kat'
  }

  _createClass(Animal, [
    {
      key: 'move',
      value: function move() {},
    },
    {
      key: 'getName',
      value: function getName() {
        return this.name
      },
    },
  ])

  return Animal
})()

例子长了不少,但其实主要的变化只有两个:一是 Animal 被包了一层而不是直接返回;二是新增的方法 movegetName 是通过一个 _createClass() 方法来实现的。它将两个方法以 key/value 的形式作为数组传入,看起来,是要把它们设置到 Animal 的原型链上面,以便后续继承之用。

为啥 Animal 被包了一层呢,这是个好问题,但答案我们将留到后文揭晓。现在,我们先看一下这个长长的 _createClass 实现是什么:

var _createClass = (function() {
  function defineProperties(target, props) {
    for (var i = 0; i < props.length; i++) {
      var descriptor = props[i]
      descriptor.enumerable = descriptor.enumerable || false
      descriptor.configurable = true
      if ('value' in descriptor) descriptor.writable = true
      Object.defineProperty(target, descriptor.key, descriptor)
    }
  }

  return function(Constructor, protoProps, staticProps) {
    if (protoProps) defineProperties(Constructor.prototype, protoProps)
    if (staticProps) defineProperties(Constructor, staticProps)
    return Constructor
  }
})()

它是个立即执行函数,执行又返回了另一个函数。说明啥,一定用了闭包,说明里面要封装些「私有」变量,那就是 defineProperties 这个函数。这很好,一是这个函数只会生成一次,二是明确了这个函数只与 _createClass 这个事情相关。

再细看这个返回的函数,接受 constructorprotoPropsstaticProps 三个参数。staticProps 我们暂时不会用到,回头再讲;我们传入的数组是通过 protoProps 接受的。接下来,看一下 defineProperties 做了啥事。

它将每一个传进来的 props 做了如下处理:分别设置了他们的 enumerableconfigurablewritable 属性。而传进来的 targetAnimal.prototype,相当于,这个函数最后的执行效果会是这样:

function defineProperties(target, props) {
  for (var i = 0; i < props.length; i++) {
    // 前面处理其实得到这样这个 descriptor 对象:
    var descriptor = {
      ...props[i],
      enumerable: false,
      configurable: true,
      writable: true,
    }
    Object.defineProperty(target, descriptor.key, descriptor)
  }
}

看到这里就很明白了,它就是把你定义的 movegetName 方法通过 Object.defineProperty 方法设置到 Animal.prototype 上去。前面我们说过,prototype 是用来存储公共属性的。也就是说,这两个方法在你使用继承的时候,可以被子对象通过原型链上溯访问到。也就是说,我们这个小小的例子里,声明的两个方法已经具备了继承能力了。

至于 enumerableconfigurablewritable 属性是什么东西呢,查一下语言规范就知道了。简单来说,writablefalse 时,其值不能通过 setter 改变;enumerablefalse 时,不能出现在 for-in 循环中。当然,这里是粗浅的理解,暂时不是这篇文章的重点。

简单继承——一层继承 + 字段覆盖

class Animal {
  constructor(name) {
    this.name = name || 'Kat'
  }
}

class Tiger extends Animal {
  constructor(name, type) {
    super(name)
    this.type = type || 'Paper'
  }
}

加一层继承和字段覆盖能看到啥东西呢?能看到继承底下的实现机制是怎么样的,以及它的 constructor__proto__ 属性将如何被正确设置。带着这两个问题,我们一起来看下编译后的源码:

'use strict'

function _possibleConstructorReturn(self, call) {
  if (!self) {
    throw new ReferenceError(
      "this hasn't been initialised - super() hasn't been called"
    )
  }
  return call && (typeof call === 'object' || typeof call === 'function')
    ? call
    : self
}

function _inherits(subClass, superClass) {
  if (typeof superClass !== 'function' && superClass !== null) {
    throw new TypeError(
      'Super expression must either be null or a function, not ' +
        typeof superClass
    )
  }
  subClass.prototype = Object.create(superClass && superClass.prototype, {
    constructor: {
      value: subClass,
      enumerable: false,
      writable: true,
      configurable: true,
    },
  })
  if (superClass)
    Object.setPrototypeOf
      ? Object.setPrototypeOf(subClass, superClass)
      : (subClass.__proto__ = superClass)
}

function _classCallCheck(instance, Constructor) {
  if (!(instance instanceof Constructor)) {
    throw new TypeError('Cannot call a class as a function')
  }
}

var Animal = function Animal(name) {
  _classCallCheck(this, Animal)

  this.name = name || 'Kat'
}

var Tiger = (function(_Animal) {
  _inherits(Tiger, _Animal)

  function Tiger(name, type) {
    _classCallCheck(this, Tiger)

    var _this = _possibleConstructorReturn(
      this,
      (Tiger.__proto__ || Object.getPrototypeOf(Tiger)).call(this, name)
    )

    _this.type = type || 'Paper'
    return _this
  }

  return Tiger
})(Animal)

相比无继承的代码,这里主要增加了几个函数。_possibleConstructorReturn 顾名思义,可能不是很重要,回头再读。精华在 _inherits(Tiger, Animal) 这个函数,我们按顺序来读一下。

function _inherits(subClass, superClass) {
  if (typeof superClass !== 'function' && superClass !== null) {
    throw new TypeError(
      'Super expression must either be null or a function, not ' +
        typeof superClass
    )
  }
  subClass.prototype = Object.create(superClass && superClass.prototype, {
    constructor: {
      value: subClass,
      enumerable: false,
      writable: true,
      configurable: true,
    },
  })
  if (superClass)
    Object.setPrototypeOf
      ? Object.setPrototypeOf(subClass, superClass)
      : (subClass.__proto__ = superClass)
}

首先是一段异常处理,简单地检查了 superClass 要么是个函数,要么得是个 null。也就是说,如果你这样写那是不行的:

const Something = 'not-a-function'
class Animal extends Something {}
// Error: Super expression must either be null or a function, not string

接下来这句代码将 prototypeconstructor 一并设置到位,是精华。注意,这个地方留个问题:为什么要用 Object.create(superClass.prototype),而不是直接这么写:

function _inherits(subClass, superClass) {
  subClass.prototype = superClass && superClass.prototype
  subClass.prototype.constructor = { ... }
}

很明显,是为了避免任何对 subClass.prototype 的修改影响到 superClass.prototype。使用 Object.create(asPrototype) 出来的对象,其实上是将 subClass.prototype.__proto__ = superClass.prototype,这样 subClass 也就继承了 superClass,可以达到这样两个目的:

  1. superClass.prototype 原型上发生的修改都能实时反映到 subClass 的实例上
  2. subClass.prototype 上的任何修改不会影响到 superClass.prototype

最后,如果 superClass 不为空,那么将 subClass.__proto__ 设置为 superClass。这是为了继承 superClass 的静态方法和属性。如以下的例子中,Cat.TYPE 能获取到 Animal.TYPE

class Animal {
  static TYPE = 'PAPER'
  static createTyping() {
    return Animal.TYPE
  }
}

class Cat extends Animal {}

console.log(Cat.TYPE)           // PAPER
console.log(Cat.createTyping()) // PAPER

至此,一个简单的继承就完成了。在使用了 extends 关键字后,实际上背后发生的事情是:

  • 子「类」prototype 上的 __proto__ 被正确设置,指向父「类」的 prototype: subClass.prototype = { __proto__: superClass.prototype }
  • 子「类」prototype 上的 constructor 被正确初始化,这样 instanceof 关系能得到正确结果
  • 子「类」的 __proto__ 被指向父「类」,这样父「类」上的静态字段和方法能被子「类」继承

好,要点看完了。后面内容跟继承关系不大,但既然源码扒都扒了,我们不妨继续深入探索一些场景:

无继承——静态函数

看一个简单的代码:

class Animal {
  static create() {
    return new Animal()
  }
}

首先要知道,这个「静态」同样不是强类型类继承语言里有的「静态」的概念。所谓静态,就是说它跟实例是没关系的,而跟「类」本身有关系。比如,你可以这样调用:Animal.create(),但不能这样用:new Animal().create。什么场景下会用到这种模式呢?比如说:

  • 工厂模式或单例模式
  • Object.createObject.keys 等常用方法

既然只有通过构造函数本身去调用,而不能通过实例来调用,期望它们被绑定到函数本身上似乎很自然。我们来看看上面这段代码将被如何编译:

'use strict'

var _createClass = (function() {
  function defineProperties(target, props) {
    for (var i = 0; i < props.length; i++) {
      var descriptor = props[i]
      descriptor.enumerable = descriptor.enumerable || false
      descriptor.configurable = true
      if ('value' in descriptor) descriptor.writable = true
      Object.defineProperty(target, descriptor.key, descriptor)
    }
  }
  return function(Constructor, protoProps, staticProps) {
    if (protoProps) defineProperties(Constructor.prototype, protoProps)
    if (staticProps) defineProperties(Constructor, staticProps)
    return Constructor
  }
})()

function _classCallCheck(instance, Constructor) {
  if (!(instance instanceof Constructor)) {
    throw new TypeError('Cannot call a class as a function')
  }
}

var Animal = (function() {
  function Animal() {
    _classCallCheck(this, Animal)
  }

  _createClass(Animal, null, [
    {
      key: 'create',
      value: function create() {},
    },
  ])

  return Animal
})()

熟悉的函数,熟悉的配方。与本文的第二个例子相比,仅有一个地方的不同:create 方法是作为 _createClass 方法的第三个参数被传入的,这正是我们上文提到的 staticProps 参数:

var _createClass = (function() {
  function defineProperties(target, props) { ... }

  return function(Constructor, protoProps, staticProps) {
    if (protoProps) defineProperties(Constructor.prototype, protoProps)
    if (staticProps) defineProperties(Constructor, staticProps)
    return Constructor
  }
})()

_createClass(Animal, null, [
  {
    key: 'create',
    value: function create() {},
  },
])

可以看见,create 方法是直接被创建到 Animal 上的:defineProperties(Animal, [{ key: 'create', value: function() {} }]),最终会将函数赋给 Animal.create。我们的猜测并没有错误。

无继承——静态变量

class Tiger {
  static TYPE = 'REAL'
}

还有个小例子。如果是静态变量的话,同样因为不希望在实例对象上所使用,我们会看到编译出来的代码中它是直接被设置到函数上。代码已经很熟悉,不必再讲。

'use strict'

function _classCallCheck(instance, Constructor) {
  if (!(instance instanceof Constructor)) {
    throw new TypeError('Cannot call a class as a function')
  }
}

var Tiger = function Tiger() {
  _classCallCheck(this, Tiger)
}

Tiger.TYPE = 'REAL'

有趣的是,静态变量会不会被「子类」继承呢?这个可请读者自己做个实验,验证验证。

神秘的类 arrow function

写 React 的东西,一定遇见过这个问题:

class Button extends React.Component {  constructor() {    super()    this.state = {      isToggleOn: true,    }    // 画重点

相关推荐