对称加密和非对称加密
参考:http://www.williamlong.info/archives/500.html
从保护数据的角度讲,对数据安全这个广义概念,可以细分为三部分:数据加密、数据传输安全和身份认证管理。
l数据加密就是按照确定的密码算法将敏感的明文数据变换成难以识别的密文数据,通过使用不同的密钥,可用同一加密算法将同一明文加密成不同的密文。当需要时,可使用密钥将密文数据还原成明文数据,称为解密。这样就可以实现数据的保密性。数据加密被公认为是保护数据传输安全惟一实用的方法和保护存储数据安全的有效方法,它是数据保护在技术上最重要的防线。
l数据传输安全是指数据在传输过程中必须要确保数据的安全性,完整性和不可篡改性。
l身份认证的目的是确定系统和网络的访问者是否是合法用户。主要采用登录密码、代表用户身份的物品(如智能卡、IC卡等)或反映用户生理特征的标识鉴别访问者的身份。
数据加密
数据加密技术是最基本的安全技术,被誉为信息安全的核心,最初主要用于保证数据在存储和传输过程中的保密性。它通过变换和置换等各种方法将被保护信息置换成密文,然后再进行信息的存储或传输,即使加密信息在存储或者传输过程为非授权人员所获得,也可以保证这些信息不为其认知,从而达到保护信息的目的。该方法的保密性直接取决于所采用的密码算法和密钥长度。
根据密钥类型不同可以将现代密码技术分为两类:对称加密算法(私钥密码体系)和非对称加密算法(公钥密码体系)。在对称加密算法中,数据加密和解密采用的都是同一个密钥,因而其安全性依赖于所持有密钥的安全性。对称加密算法的主要优点是加密和解密速度快,加密强度高,且算法公开,但其最大的缺点是实现密钥的秘密分发困难,在大量用户的情况下密钥管理复杂,而且无法完成身份认证等功能,不便于应用在网络开放的环境中。目前最著名的对称加密算法有数据加密标准DES和欧洲数据加密标准IDEA等,目前加密强度最高的对称加密算法是高级加密标准AES。
对称加密算法、非对称加密算法和不可逆加密算法可以分别应用于数据加密、身份认证和数据安全传输。
l对称加密算法
对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有DES、IDEA和AES。
传统的DES由于只有56位的密钥,因此已经不适应当今分布式开放网络对数据加密安全性的要求。1997年RSA数据安全公司发起了一项“DES挑战赛”的活动,志愿者四次分别用四个月、41天、56个小时和22个小时破解了其用56位密钥DES算法加密的密文。即DES加密算法在计算机速度提升后的今天被认为是不安全的。
AES是美国联邦政府采用的商业及政府数据加密标准,预计将在未来几十年里代替DES在各个领域中得到广泛应用。AES提供128位密钥,因此,128位AES的加密强度是56位DES加密强度的1021倍还多。假设可以制造一部可以在1秒内破解DES密码的机器,那么使用这台机器破解一个128位AES密码需要大约149亿万年的时间。(更深一步比较而言,宇宙一般被认为存在了还不到200亿年)因此可以预计,美国国家标准局倡导的AES即将作为新标准取代DES。
l不对称加密算法
不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。
l不可逆加密算法
不可逆加密算法的特征是加密过程中不需要使用密钥,输入明文后由系统直接经过加密算法处理成密文,这种加密后的数据是无法被解密的,只有重新输入明文,并再次经过同样不可逆的加密算法处理,得到相同的加密密文并被系统重新识别后,才能真正解密。显然,在这类加密过程中,加密是自己,解密还得是自己,而所谓解密,实际上就是重新加一次密,所应用的“密码”也就是输入的明文。不可逆加密算法不存在密钥保管和分发问题,非常适合在分布式网络系统上使用,但因加密计算复杂,工作量相当繁重,通常只在数据量有限的情形下使用,如广泛应用在计算机系统中的口令加密,利用的就是不可逆加密算法。近年来,随着计算机系统性能的不断提高,不可逆加密的应用领域正在逐渐增大。在计算机网络中应用较多不可逆加密算法的有RSA公司发明的MD5算法和由美国国家标准局建议的不可逆加密标准SHS(SecureHashStandard:安全杂乱信息标准)等。
传输安全
数据传输加密技术目的是对传输中的数据流加密,以防止通信线路上的泄漏、篡改和破坏。数据传输的完整性通常通过数字签名的方式来实现,即数据的发送方在发送数据的同时利用单向的不可逆加密算法Hash函数或者其它信息文摘算法计算出所传输数据的消息文摘,并将该消息文摘作为数字签名随数据一同发送。接收方在收到数据的同时也收到该数据的数字签名,接收方使用相同的算法计算出接收到的数据的数字签名,并将该数字签名和接收到的数字签名进行比较,若二者相同,则说明数据在传输过程中未被修改,数据完整性得到了保证。
Hash算法也称为消息摘要或单向转换,是一种不可逆加密算法,称它为单向转换是因为:
1)双方必须在通信的两个端头处各自执行Hash函数计算;
2)使用Hash函数很容易从消息计算出消息摘要,但其逆向反演过程以目前计算机的运算能力几乎不可实现。
Hash散列本身就是所谓加密检查,通信双方必须各自执行函数计算来验证消息。举例来说,发送方首先使用Hash算法计算消息检查和,然后将计算结果A封装进数据包中一起发送;接收方再对所接收的消息执行Hash算法计算得出结果B,并将B与A进行比较。如果消息在传输中遭篡改致使B与A不一致,接收方丢弃该数据包。
有两种最常用的Hash函数:
·MD5(消息摘要5):MD5对MD4做了改进,计算速度比MD4稍慢,但安全性能得到了进一步改善。MD5在计算中使用了64个32位常数,最终生成一个128位的完整性检查和。
·SHA安全Hash算法:其算法以MD5为原型。SHA在计算中使用了79个32位常数,最终产生一个160位完整性检查和。SHA检查和长度比MD5更长,因此安全性也更高。
---------------------------------
对称加密:一个密钥DES、IDEA和AES
不对称加密:一个公钥,一个私钥RSADSA
不可逆加密:两端使用相同的Hash函数计算MD5SHA