2018最新大数据就业岗位及职能汇总

互联网在经历前几年的繁荣之后,现在开始进入寒冬,资本家不再像以前那样大胆地投资,纷纷攥紧自己的口袋。但是从整个互联网行业来看,大数据却一枝独秀,逐渐崛起。

我们正处于一个大数据飞速发展的时代,我们所做的一切事,不论是在互联网中或者是互联网之外,都会留下数字的痕迹。比如刷卡购物,网络搜索,手机上网,乃至在网上每一个小小的点击都会被一一记录下来。各行各业,大数据技术应用也越来越广泛,对于大数据人才的需求也越来越大。

如果你学的是大数据,那么恭喜你,你的发展良机来了。你将有可能成为大数据工程师,走向人生巅峰。

2018最新大数据就业岗位及职能汇总

目前国内大数据工程师工作领域大致可分为四类

1、数据开发工程师:负责数据接入、数据清洗、底层重构,业务主题建模等工作;大数据整体的计算平台开发与应用;

2、数据分析师:在拥有行业数据的电商、金融、电信、咨询等行业里做业务咨询,商务智能,出分析报告。

3、数据挖掘工程师:在多媒体、电商、搜索、社交等大数据相关行业里做机器学习算法实现和分析。

4、科学研究方向:在高校、科研单位、企业研究院等高大上科研机构研究新算法效率改进及未来应用。

说说各工作领域需要掌握的技能

1、大数据开发工程师:对大数据系统、分布式服务系统有一定了解;拥有扎实的编程能力,熟练掌握常见数据结构,掌握Java/Python语言和常用框架,了解多线程、异步通信处理等;熟练掌握常见SQL、NoSQL数据库原理、数据库设计、查询编写和优化;熟悉大数据处理相关技术,Hadoop、Hive、Spark、Hbase、Mongo、Luc

2、数据分析师

需要有深厚的数理统计基础,但是对程序开发能力不做要求。需要熟练使用主流的数据挖掘(或统计分析)工具如Business Analytics and Business Intelligence Software(SAS)、SPSS、EXCEL等。需要对与所在行业有关的一切核心数据有深入的理解,以及一定的数据敏感性培养。

3、数据挖掘工程师

需要理解主流机器学习算法的原理和应用。需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapReduce的原理操作以及熟练使用Hadoop系列工具更好。

4、科学研究方向

需要深入学习数据挖掘的理论基础,包括关联规则挖掘 (Apriori和FPTree)、分类算法(C4.5、KNN、Logistic Regression、SVM等) 、聚类算法 (Kmeans、Spectral Clustering)。目标可以先吃透数据挖掘10大算法各自的使用情况和优缺点。

任何一项工作都不是那么简单,而那些年薪几十万上百万的大数据工程师,也是一点点学过来的,所以,当你决定了做大数据以后,机会已经来了,剩下的要靠你自己努力了。

嗯....在这里,要插播一则广告啦!

想成为大数据工程师的你还有技能没有点亮,那么,是时候开始了!千锋大数据培训机构,只为打造专业的你!

相关推荐