深度学习入门比赛——街景字符识别(五)
这是比赛的最后一个阶段,模型的集成融合
在传统的机器学习中,模型集成融合有stack,投票等方式,在深度学习中,竟然也可以使用模型集成融合,这让我学到了很多,下面就将这些方法进行一下罗列记录,方便日后思考学习:
方法一:Droupout
droupout经常用作防止模型拟合来使用,但是由于其对其中某些节点能够进行随机停止工作的特性,可以用作预测阶段不同的模型,然后将这些模型的结果综合考虑进行集成
class SVHN_Model1(nn.Module): def __init__(self): super(SVHN_Model1, self).__init__() # CNN提取特征模块 self.cnn = nn.Sequential( nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)), nn.ReLU(), nn.Dropout(0.25), nn.MaxPool2d(2), nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)), nn.ReLU(), nn.Dropout(0.25), nn.MaxPool2d(2), ) # self.fc1 = nn.Linear(32*3*7, 11) self.fc2 = nn.Linear(32*3*7, 11) self.fc3 = nn.Linear(32*3*7, 11) self.fc4 = nn.Linear(32*3*7, 11) self.fc5 = nn.Linear(32*3*7, 11) self.fc6 = nn.Linear(32*3*7, 11) def forward(self, img): feat = self.cnn(img) feat = feat.view(feat.shape[0], -1) c1 = self.fc1(feat) c2 = self.fc2(feat) c3 = self.fc3(feat) c4 = self.fc4(feat) c5 = self.fc5(feat) c6 = self.fc6(feat) return c1, c2, c3, c4, c5, c6
方法二:TTA
类似平均取值的方法,使用同一种模型,进行多次的预测,并将这些结果进行平均取值,这里需要对测试数据进行扩增,以免第二次以后的预测,模型结果和之前相差无几导致集成效果失败;当然这里面还是没有搞清楚,不同的预测结果是怎么取平均的,或者是进行投票?
def predict(test_loader, model, tta=10): model.eval() test_pred_tta = None # TTA 次数 for _ in range(tta): test_pred = [] with torch.no_grad(): for i, (input, target) in enumerate(test_loader): c0, c1, c2, c3, c4, c5 = model(data[0]) output = np.concatenate([c0.data.numpy(), c1.data.numpy(), c2.data.numpy(), c3.data.numpy(), c4.data.numpy(), c5.data.numpy()], axis=1) test_pred.append(output) test_pred = np.vstack(test_pred) if test_pred_tta is None: test_pred_tta = test_pred else: test_pred_tta += test_pred return test_pred_tta
方法三:Snapshot
初步理解应该是同一种模型但是不同的学习率,使得模型进入到不同的局部最优中,保存这些参数,相当于保存了不同的模型,最后集成这些模型:
之后还是得不断的尝试这些方法,可惜速度太慢,方法尝试速度不高啊,/(ㄒoㄒ)/~~