源码详解Pytorch的state_dict和load_state_dict

在 Pytorch 中一种模型保存和加载的方式如下:

# save
torch.save(model.state_dict(), PATH)

# load
model = MyModel(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()

model.state_dict()其实返回的是一个OrderDict,存储了网络结构的名字和对应的参数,下面看看源代码如何实现的。

state_dict

# torch.nn.modules.module.py
class Module(object):
    def state_dict(self, destination=None, prefix='', keep_vars=False):
        if destination is None:
            destination = OrderedDict()
            destination._metadata = OrderedDict()
        destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version)
        for name, param in self._parameters.items():
            if param is not None:
                destination[prefix + name] = param if keep_vars else param.data
        for name, buf in self._buffers.items():
            if buf is not None:
                destination[prefix + name] = buf if keep_vars else buf.data
        for name, module in self._modules.items():
            if module is not None:
                module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
        for hook in self._state_dict_hooks.values():
            hook_result = hook(self, destination, prefix, local_metadata)
            if hook_result is not None:
                destination = hook_result
        return destination

可以看到state_dict函数中遍历了4中元素,分别是_paramters,_buffers,_modules_state_dict_hooks,前面三者在之前的文章已经介绍区别,最后一种就是在读取state_dict时希望执行的操作,一般为空,所以不做考虑。另外有一点需要注意的是,在读取Module时采用的递归的读取方式,并且名字间使用.做分割,以方便后面load_state_dict读取参数。

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.my_tensor = torch.randn(1) # 参数直接作为模型类成员变量
        self.register_buffer('my_buffer', torch.randn(1)) # 参数注册为 buffer
        self.my_param = nn.Parameter(torch.randn(1))
        self.fc = nn.Linear(2,2,bias=False)
        self.conv = nn.Conv2d(2,1,1)
        self.fc2 = nn.Linear(2,2,bias=False)
        self.f3 = self.fc
    def forward(self, x):
        return x

model = MyModel()
print(model.state_dict())
>>>OrderedDict([('my_param', tensor([-0.3052])), ('my_buffer', tensor([0.5583])), ('fc.weight', tensor([[ 0.6322, -0.0255],
        [-0.4747, -0.0530]])), ('conv.weight', tensor([[[[ 0.3346]],

         [[-0.2962]]]])), ('conv.bias', tensor([0.5205])), ('fc2.weight', tensor([[-0.4949,  0.2815],
        [ 0.3006,  0.0768]])), ('f3.weight', tensor([[ 0.6322, -0.0255],
        [-0.4747, -0.0530]]))])

可以看到最后的确输出了三种参数。

load_state_dict

下面的代码中我们可以分成两个部分看,

  1. load(self)

这个函数会递归地对模型进行参数恢复,其中的_load_from_state_dict的源码附在文末。

首先我们需要明确state_dict这个变量表示你之前保存的模型参数序列,而_load_from_state_dict函数中的local_state表示你的代码中定义的模型的结构。

那么_load_from_state_dict的作用简单理解就是假如我们现在需要对一个名为conv.weight的子模块做参数恢复,那么就以递归的方式先判断conv是否在staet__dictlocal_state中,如果不在就把conv添加到unexpected_keys中去,否则递归的判断conv.weight是否存在,如果都存在就执行param.copy_(input_param),这样就完成了conv.weight的参数拷贝。

  1. if strict:

这个部分的作用是判断上面参数拷贝过程中是否有unexpected_keys或者missing_keys,如果有就报错,代码不能继续执行。当然,如果strict=False,则会忽略这些细节。

def load_state_dict(self, state_dict, strict=True):
    missing_keys = []
    unexpected_keys = []
    error_msgs = []

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        module._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(self)

    if strict:
        error_msg = ''
        if len(unexpected_keys) > 0:
            error_msgs.insert(
                0, 'Unexpected key(s) in state_dict: {}. '.format(
                    ', '.join('"{}"'.format(k) for k in unexpected_keys)))
        if len(missing_keys) > 0:
            error_msgs.insert(
                0, 'Missing key(s) in state_dict: {}. '.format(
                    ', '.join('"{}"'.format(k) for k in missing_keys)))

    if len(error_msgs) > 0:
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                           self.__class__.__name__, "\n\t".join(error_msgs)))
  • _load_from_state_dict
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                          missing_keys, unexpected_keys, error_msgs):
    for hook in self._load_state_dict_pre_hooks.values():
        hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

    local_name_params = itertools.chain(self._parameters.items(), self._buffers.items())
    local_state = {k: v.data for k, v in local_name_params if v is not None}

    for name, param in local_state.items():
        key = prefix + name
        if key in state_dict:
            input_param = state_dict[key]

            # Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
            if len(param.shape) == 0 and len(input_param.shape) == 1:
                input_param = input_param[0]

            if input_param.shape != param.shape:
                # local shape should match the one in checkpoint
                error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
                                  'the shape in current model is {}.'
                                  .format(key, input_param.shape, param.shape))
                continue

            if isinstance(input_param, Parameter):
                # backwards compatibility for serialized parameters
                input_param = input_param.data
            try:
                param.copy_(input_param)
            except Exception:
                error_msgs.append('While copying the parameter named "{}", '
                                  'whose dimensions in the model are {} and '
                                  'whose dimensions in the checkpoint are {}.'
                                  .format(key, param.size(), input_param.size()))
        elif strict:
            missing_keys.append(key)

    if strict:
        for key, input_param in state_dict.items():
            if key.startswith(prefix):
                input_name = key[len(prefix):]
                input_name = input_name.split('.', 1)[0]  # get the name of param/buffer/child
                if input_name not in self._modules and input_name not in local_state:
                    unexpected_keys.append(key)


MARSGGBO?原创


如有意合作,欢迎私戳

邮箱:


2019-12-20 21:55:21

相关推荐