神经网络求解新思路:OpenAI用线性网络计算非线性问题
我们展示了深度线性网络(使用浮点运算实现)实际上并不是线性的,它可以执行非线性计算。我们利用这一点使用进化策略在线性网络中寻找参数,使我们能够解决重要问题。
神经网络通常由一个线性层和非线性函数(比如 tanh 和修正线性单元 ReLU)堆栈而成。如果没有非线性,理论上一连串的线性层和单一的线性层在数学上是等价的。因此浮点运算是非线性的,并足以训练深度网络。这很令人惊讶。
背景
计算机使用的数字并不是完美的数学对象,而是使用有限个比特的近似表示。浮点数通常被计算机用于表示数学对象。每一个浮点数由小数和指数的组合构成。在 IEEE 的 float32 标准中,小数分配了 23 个比特,指数分配了 8 个比特,还有一个比特是表示正负的符号位 sign。
按照这种惯例和二进制格式,以二进制表示的最小非零正常数是 1.0..0 x 2^-126,以下用 min 来指代。而下一个可表示的数是 1.0..01 x 2^-126,可以写作 min+0.0..01 x 2^-126。很显然,第一和第二个数之间的 gap 比 0 和 min 之间的 gap 小了 2^20 倍。在 float32 标准中,当一个数比最小的可表示数还小的时候,则该数字将被映射为零。因此,近邻零的所有包含浮点数的计算都将是非线性的。(而反常数是例外,它们在一些计算硬件上可能不可用。在我们的案例中通过设置归零(flush to zero,FTZ)解决这个问题,即将所有的反常数当成零。)
因此,虽然通常情况下,所有的数字和其浮点数表示之间的区别很小,但是在零附近会出现很大的 gap,而这个近似误差可能带来很大影响。
这会导致一些奇怪的影响,一些常用的数学规则无法发挥作用。比如,(a + b) x c 不等于 a x c + b x c。
比如,如果你设置 a = 0.4 x min,b = 0.5 x min,c = 1 / min。
则:(a+b) x c = (0.4 x min + 0.5 x min) x 1 / min = (0 + 0) x 1 / min = 0。
然而:(a x c) + (b x c) = 0.4 x min / min + 0.5 x min x 1 / min = 0.9。
再比如,我们可以设置 a = 2.5 x min,b = -1.6 x min,c = 1 x min。
则:(a+b) + c = (0) + 1 x min = min
然而:(b+c) + a = (0 x min) + 2.5 x min = 2.5 x min。
在这种小尺度的情况下,基础的加法运算变成非线性的了!
使用进化策略利用非线性
我们想知道这种内在非线性是否可以作为计算非线性的方法,如果可以,则深度线性网络能够执行非线性运算。挑战在于现代微分库在非线性尺度较小时会忽略它们。因此,使用反向传播利用非线性训练神经网络很困难或不可能。
我们可以使用进化策略(ES),无需依赖符号微分(symbolic differentiation)法就可以评估梯度。使用进化策略,我们可以将 float32 的零点邻域(near-zero)行为作为计算非线性的方法。深度线性网络通过反向传播在 MNIST 数据集上训练时,可获取 94% 的训练准确率和 92% 的测试准确率(机器之心使用三层全连接网络可获得 98.51% 的测试准确率)。相对而言,相同的线性网络使用进化策略训练可获取大于 99% 的训练准确率、96.7% 的测试准确率,确保激活值足够小而分布在 float32 的非线性区间内。训练性能的提升原因在于在 float32 表征中使用非线性的进化策略。这些强大的非线性允许任意层生成新的特征,这些特征是低级别特征的非线性组合。以下是网络结构: