Eventloop不可怕,可怕的是遇上Promise

有关Eventloop+Promise的面试题大约分以下几个版本——得心应手版、游刃有余版、炉火纯青版、登峰造极版和究极变态版。假设小伙伴们战到最后一题,以后遇到此类问题,都是所向披靡。当然如果面试官们还能想出更变态的版本,算我输。

版本一:得心应手版

考点:eventloop中的执行顺序,宏任务微任务的区别。

吐槽:这个不懂,没得救了,回家重新学习吧。

setTimeout(()=>{
   console.log(1) 
},0)
Promise.resolve().then(()=>{
   console.log(2) 
})
console.log(3)

这个版本的面试官们就特别友善,仅仅考你一个概念理解,了解宏任务(marcotask)微任务(microtask),这题就是送分题。

笔者答案:这个是属于Eventloop的问题。main script运行结束后,会有微任务队列和宏任务队列。微任务先执行,之后是宏任务。

PS:概念问题

有时候会有版本是宏任务>微任务>宏任务,在这里笔者需要讲清楚一个概念,以免混淆。这里有个main script的概念,就是一开始执行的代码(代码总要有开始执行的时候对吧,不然宏任务和微任务的队列哪里来的),这里被定义为了宏任务(笔者喜欢将main script的概念单独拎出来,不和两个任务队列混在一起),然后根据main script中产生的微任务队列和宏任务队列,分别清空,这个时候是先清空微任务的队列,再去清空宏任务的队列。

版本二:游刃有余版

这一个版本,面试官们为了考验一下对于Promise的理解,会给题目加点料:

考点:Promise的executor以及then的执行方式

吐槽:这是个小坑,promise掌握的熟练的,这就是人生的小插曲。

setTimeout(()=>{
   console.log(1) 
},0)
let a=new Promise((resolve)=>{
    console.log(2)
    resolve()
}).then(()=>{
   console.log(3) 
}).then(()=>{
   console.log(4) 
})
console.log(4)

此题看似在考Eventloop,实则考的是对于Promise的掌握程度。Promise的then是微任务大家都懂,但是这个then的执行方式是如何的呢,以及Promise的executor是异步的还是同步的?

错误示范:Promise的then是一个异步的过程,每个then执行完毕之后,就是一个新的循环的,所以第二个then会在setTimeout之后执行。(没错,这就是某年某月某日笔者的一个回答。请给我一把枪,真想打死当时的自己。)

正确示范:这个要从Promise的实现来说,Promise的executor是一个同步函数,即非异步,立即执行的一个函数,因此他应该是和当前的任务一起执行的。而Promise的链式调用then,每次都会在内部生成一个新的Promise,然后执行then,在执行的过程中不断向微任务(microtask)推入新的函数,因此直至微任务(microtask)的队列清空后才会执行下一波的macrotask。

详细解析

(如果大家不嫌弃,可以参考我的另一篇文章,从零实现一个Promise,里面的解释浅显易懂。)
我们以babel的core-js中的promise实现为例,看一眼promise的执行规范:

代码位置:promise-polyfill

PromiseConstructor = function Promise(executor) {
    //...
    try {
      executor(bind(internalResolve, this, state), bind(internalReject, this, state));
    } catch (err) {
      internalReject(this, state, err);
    }
};

这里可以很清除地看到Promise中的executor是一个立即执行的函数。

then: function then(onFulfilled, onRejected) {
    var state = getInternalPromiseState(this);
    var reaction = newPromiseCapability(speciesConstructor(this, PromiseConstructor));
    reaction.ok = typeof onFulfilled == 'function' ? onFulfilled : true;
    reaction.fail = typeof onRejected == 'function' && onRejected;
    reaction.domain = IS_NODE ? process.domain : undefined;
    state.parent = true;
    state.reactions.push(reaction);
    if (state.state != PENDING) notify(this, state, false);
    return reaction.promise;
},

接着是Promise的then函数,很清晰地看到reaction.promise,也就是每次then执行完毕后会返回一个新的Promise。也就是当前的微任务(microtask)队列清空了,但是之后又开始添加了,直至微任务(microtask)队列清空才会执行下一波宏任务(marcotask)。

//state.reactions就是每次then传入的函数
 var chain = state.reactions;
  microtask(function () {
    var value = state.value;
    var ok = state.state == FULFILLED;
    var i = 0;
    var run = function (reaction) {
        //...
    };
    while (chain.length > i) run(chain[i++]);
    //...
  });

最后是Promise的任务resolve之后,开始执行then,可以看到此时会批量执行then中的函数,而且还给这些then中回调函数放入了一个microtask这个很显眼的函数之中,表示这些回调函数是在微任务中执行的。

那么在没有Promise的浏览器中,微任务这个队列是如何实现的呢?

小知识:babel中对于微任务的polyfill,如果是拥有setImmediate函数平台,则使用之,若没有则自定义则利用各种比如nodejs中的process.nextTick,浏览器中支持postMessage的,或者是通过create一个script来实现微任务(microtask)。最终的最终,是使用setTimeout,不过这个就和微任务无关了,promise变成了宏任务的一员。

拓展思考:

为什么有时候,then中的函数是一个数组?有时候就是一个函数?

我们稍稍修改一下上述题目,将链式调用的函数,变成下方的,分别调用then。且不说这和链式调用之间的不同用法,这边只从实践角度辨别两者的不同。链式调用是每次都生成一个新的Promise,也就是说每个then中回调方法属于一个microtask,而这种分别调用,会将then中的回调函数push到一个数组之中,然后批量执行。再换句话说,链式调用可能会被Evenloop中其他的函数插队,而分别调用则不会(仅针对最普通的情况,then中无其他异步操作。)。

let a=new Promise((resolve)=>{
     console.log(2)
     resolve()
})
a.then(()=>{
    console.log(3) 
})
a.then(()=>{
    console.log(4) 
})

下一模块会对此微任务(microtask)中的“插队”行为进行详解。

版本三:炉火纯青版

这一个版本是上一个版本的进化版本,上一个版本的promise的then函数并未返回一个promise,如果在promise的then中创建一个promise,那么结果该如何呢?

考点:promise的进阶用法,对于then中return一个promise的掌握

吐槽:promise也可以是地狱……

new Promise((resolve,reject)=>{
    console.log("promise1")
    resolve()
}).then(()=>{
    console.log("then11")
    new Promise((resolve,reject)=>{
        console.log("promise2")
        resolve()
    }).then(()=>{
        console.log("then21")
    }).then(()=>{
        console.log("then23")
    })
}).then(()=>{
    console.log("then12")
})
按照上一节最后一个microtask的实现过程,也就是说一个Promise所有的then的回调函数是在一个microtask函数中执行的,但是每一个回调函数的执行,又按照情况分为立即执行,微任务(microtask)和宏任务(macrotask)。

遇到这种嵌套式的Promise不要慌,首先要心中有一个队列,能够将这些函数放到相对应的队列之中。

Ready GO

第一轮

  • current task: promise1是当之无愧的立即执行的一个函数,参考上一章节的executor,立即执行输出[promise1]
  • micro task queue: [promise1的第一个then]

第二轮

  • current task: then1执行中,立即输出了then11以及新promise2的promise2
  • micro task queue: [新promise2的then函数,以及promise1的第二个then函数]

第三轮

  • current task: 新promise2的then函数输出then21和promise1的第二个then函数输出then12
  • micro task queue: [新promise2的第二then函数]

第四轮

  • current task: 新promise2的第二then函数输出then23
  • micro task queue: []

END

最终结果[promise1,then11,promise2,then21,then12,then23]

变异版本1:如果说这边的Promise中then返回一个Promise呢??

new Promise((resolve,reject)=>{
    console.log("promise1")
    resolve()
}).then(()=>{
    console.log("then11")
    return new Promise((resolve,reject)=>{
        console.log("promise2")
        resolve()
    }).then(()=>{
        console.log("then21")
    }).then(()=>{
        console.log("then23")
    })
}).then(()=>{
    console.log("then12")
})

这里就是Promise中的then返回一个promise的状况了,这个考的重点在于Promise而非Eventloop了。这里就很好理解为何then12会在then23之后执行,这里Promise的第二个then相当于是挂在新Promise的最后一个then的返回值上。

变异版本2:如果说这边不止一个Promise呢,再加一个new Promise是否会影响结果??

new Promise((resolve,reject)=>{
    console.log("promise1")
    resolve()
}).then(()=>{
    console.log("then11")
    new Promise((resolve,reject)=>{
        console.log("promise2")
        resolve()
    }).then(()=>{
        console.log("then21")
    }).then(()=>{
        console.log("then23")
    })
}).then(()=>{
    console.log("then12")
})
new Promise((resolve,reject)=>{
    console.log("promise3")
    resolve()
}).then(()=>{
    console.log("then31")
})

笑容逐渐变态,同样这个我们可以自己心中排一个队列:

第一轮

  • current task: promise1,promise3
  • micro task queue: [promise2的第一个thenpromise3的第一个then]

第二轮

  • current task: then11,promise2,then31
  • micro task queue: [promise2的第一个thenpromise1的第二个then]

第三轮

  • current task: then21,then12
  • micro task queue: [promise2的第二个then]

第四轮

  • current task: then23
  • micro task queue: []

最终输出:[promise1,promise3,then11,promise2,then31,then21,then12,then23]

版本四:登峰造极版

考点:在async/await之下,对Eventloop的影响。

槽点:别被async/await给骗了,这题不难。

相信大家也看到过此类的题目,我这里有个相当简易的解释,不知大家是否有兴趣。

async function async1() {
    console.log("async1 start");
    await  async2();
    console.log("async1 end");
}

async  function async2() {
    console.log( 'async2');
}

console.log("script start");

setTimeout(function () {
    console.log("settimeout");
},0);

async1();

new Promise(function (resolve) {
    console.log("promise1");
    resolve();
}).then(function () {
    console.log("promise2");
});
console.log('script end');

async/await仅仅影响的是函数内的执行,而不会影响到函数体外的执行顺序。也就是说async1()并不会阻塞后续程序的执行,await async2()相当于一个Promise,console.log("async1 end");相当于前方Promise的then之后执行的函数。

按照上章节的解法,最终输出结果:[script start,async1 start,async2,promise1,script end,async1 end,promise2,settimeout]

如果了解async/await的用法,则并不会觉得这题是困难的,但若是不了解或者一知半解,那么这题就是灾难啊。

  • 此处唯一有争议的就是async的then和promise的then的优先级的问题,请看下方详解。*

async/await与promise的优先级详解

async function async1() {
    console.log("async1 start");
    await  async2();
    console.log("async1 end");
}
async  function async2() {
    console.log( 'async2');
}
// 用于test的promise,看看await究竟在何时执行
new Promise(function (resolve) {
    console.log("promise1");
    resolve();
}).then(function () {
    console.log("promise2");
}).then(function () {
    console.log("promise3");
}).then(function () {
    console.log("promise4");
}).then(function () {
    console.log("promise5");
});

先给大家出个题,如果让你polyfill一下async/await,大家会怎么polyfill上述代码?下方先给出笔者的版本:

function promise1(){
    return new Promise((resolve)=>{
        console.log("async1 start");
        promise2().then(()=>{
            console.log("async1 end");
            resolve()
        })
    })
}
function promise2(){
    return new Promise((resolve)=>{
        console.log( 'async2'); 
        resolve() 
    })
}

在笔者看来,async本身是一个Promise,然后await肯定也跟着一个Promise,那么新建两个function,各自返回一个Promise。接着function promise1中需要等待function promise2中Promise完成后才执行,那么就then一下咯~。

根据这个版本得出的结果:[async1 start,async2,promise1,async1 end,promise2,...],async的await在test的promise.then之前,其实也能够从笔者的polifill中得出这个结果。

然后让笔者惊讶的是用原生的async/await,得出的结果与上述polyfill不一致!得出的结果是:[async1 start,async2,promise1,promise2,promise3,async1 end,...],由于promise.then每次都是一轮新的microtask,所以async是在2轮microtask之后,第三轮microtask才得以输出(关于then请看版本三的解释)。

/ 突如其来的沉默 /

这里插播一条,async/await因为要经过3轮的microtask才能完成await,被认为开销很大,因此之后V8和Nodejs12开始对此进行了修复,详情可以看github上面这一条pull

那么,笔者换一种方式来polyfill,相信大家都已经充分了解await后面是一个Promise,但是假设这个Promise不是好Promise怎么办?异步是好异步,Promise不是好Promise。V8就很凶残,加了额外两个Promise用于解决这个问题,简化了下源码,大概是下面这个样子:

// 不太准确的一个描述
function promise1(){
    console.log("async1 start");
    // 暗中存在的promise,笔者认为是为了保证async返回的是一个promise
    const implicit_promise=Promise.resolve()
    // 包含了await的promise,这里直接执行promise2,为了保证promise2的executor是同步的感觉
    const promise=promise2()
    // https://tc39.github.io/ecma262/#sec-performpromisethen
    // 25.6.5.4.1
    // throwaway,为了规范而存在的,为了保证执行的promise是一个promise
    const throwaway= Promise.resolve()
    //console.log(throwaway.then((d)=>{console.log(d)}))
    return implicit_promise.then(()=>{
        throwaway.then(()=>{
            promise.then(()=>{
                console.log('async1 end');
            })
        }) 
    })
}

ps:为了强行推迟两个microtask执行,笔者也是煞费苦心。

总结一下:async/await有时候会推迟两轮microtask,在第三轮microtask执行,主要原因是浏览器对于此方法的一个解析,由于为了解析一个await,要额外创建两个promise,因此消耗很大。后来V8为了降低损耗,所以剔除了一个Promise,并且减少了2轮microtask,所以现在最新版本的应该是“零成本”的一个异步。

版本五:究极变态版

饕餮大餐,什么变态的内容都往里面加,想想就很丰盛。能考到这份上,只能说面试官人狠话也多。

考点:nodejs事件+Promise+async/await+佛系setImmediate

槽点:笔者都不知道那个可能先出现

async function async1() {
    console.log("async1 start");
    await  async2();
    console.log("async1 end");
}
async  function async2() {
    console.log( 'async2');
}
console.log("script start");
setTimeout(function () {
    console.log("settimeout");
});
async1()
new Promise(function (resolve) {
    console.log("promise1");
    resolve();
}).then(function () {
    console.log("promise2");
});
setImmediate(()=>{
    console.log("setImmediate")
})
process.nextTick(()=>{
    console.log("process")
})
console.log('script end');

队列执行start

第一轮:

  • current task:"script start","async1 start",'async2',"promise1",“script end”
  • micro task queue:[async,promise.then,process]
  • macro task queue:[settimeout,setImmediate]

第二轮

  • current task:process,async1 end ,promise.then
  • micro task queue:[]
  • macro task queue:[settimeout,setImmediate]

第三轮

  • current task:setTimeout,setImmediate
  • micro task queue:[]
  • macro task queue:[]

最终结果:[script startasync1 startasync2promise1script end,process,async1 end,promise2,settimeout,setImmediate]

同样"async1 end","promise2"之间的优先级,因平台而异。

笔者干货总结

在处理一段evenloop执行顺序的时候:

  • 第一步确认宏任务,微任务

    • 宏任务:script,setTimeout,setImmediate,promise中的executor
    • 微任务:promise.then,process.nextTick
  • 第二步解析“拦路虎”,出现async/await不要慌,他们只在标记的函数中能够作威作福,出了这个函数还是跟着大部队的潮流。
  • 第三步,根据Promise中then使用方式的不同做出不同的判断,是链式还是分别调用。
  • 最后一步记住一些特别事件

    • 比如,process.nextTick优先级高于Promise.then

参考网址,推荐阅读:

有关V8中如何实现async/await的,更快的异步函数和 Promise

有关async/await规范的,ecma262

还有babel-polyfill的源码,promise

后记

Hello~Anybody here?

本来笔者是不想写这篇文章的,因为有种5年高考3年模拟的既视感,奈何面试官们都太凶残了,为了“折磨”面试者无所不用其极,怎么变态怎么来。不过因此笔者算是彻底掌握了Eventloop的用法,因祸得福吧~

有小伙伴看到最后嘛?来和笔者聊聊你遇到过的的Eventloop+Promise的变态题目。

欢迎转载~但请注明出处~首发于掘金~Eventloop不可怕,可怕的是遇上Promise

相关推荐