基于Web Audio API实现音频可视化效果

网页音频接口最有趣的特性之一它就是可以获取频率、波形和其它来自声源的数据,这些数据可以被用作音频可视化。这篇文章将解释如何做到可视化,并提供了一些基础使用案例。
基本概念节
要从你的音频源获取数据,你需要一个 AnalyserNode节点,它可以用 AudioContext.createAnalyser() 方法创建,比如:

var audioCtx = new (window.AudioContext || window.webkitAudioContext)();
var analyser = audioCtx.createAnalyser();

然后把这个节点(node)连接到你的声源:

source = audioCtx.createMediaStreamSource(stream);
source.connect(analyser);
analyser.connect(distortion);

// etc.
注意: 分析器节点(Analyser Node) 不一定输出到另一个节点,不输出时也可以正常使用。但前提是它必须与一个声源相连(直接或者通过其他节点间接相连都可以)。

分析器节点(Analyser Node) 将在一个特定的频率域里使用快速傅立叶变换(Fast Fourier Transform (FFT) )来捕获音频数据,这取决于你给 AnalyserNode.fftSize 属性赋的值(如果没有赋值,默认值为2048)。

注意: 你也可以为FFT数据缩放范围指定一个最小值和最大值,使用AnalyserNode.minDecibels 和AnalyserNode.maxDecibels进行设置,要获得不同数据的平均常量,使用 AnalyserNode.smoothingTimeConstant。阅读这些页面以获得更多如何使用它们的信息。

要捕获数据,你需要使用 AnalyserNode.getFloatFrequencyData()AnalyserNode.getByteFrequencyData() 方法来获取频率数据,用 AnalyserNode.getByteTimeDomainData() 或 AnalyserNode.getFloatTimeDomainData() 来获取波形数据。

这些方法把数据复制进了一个特定的数组当中,所以你在调用它们之前要先创建一个新数组。第一个方法会产生一个32位浮点数组,第二个和第三个方法会产生8位无符号整型数组,因此一个标准的JavaScript数组就不能使用 ―― 你需要用一个 Float32Array 或者 Uint8Array 数组,具体需要哪个视情况而定。

那么让我们来看看例子,比如我们正在处理一个2048尺寸的FFT。我们返回 AnalyserNode.frequencyBinCount 值,它是FFT的一半,然后调用Uint8Array(),把frequencyBinCount作为它的长度参数 ―― 这代表我们将对这个尺寸的FFT收集多少数据点。

analyser.fftSize = 2048;
var bufferLength = analyser.frequencyBinCount;
var dataArray = new Uint8Array(bufferLength);

要正确检索数据并把它复制到我们的数组里,就要调用我们想要的数据收集方法,把数组作为参数传递给它,例如:

analyser.getByteTimeDomainData(dataArray);

现在我们就获取了那时的音频数据,并存到了我们的数组里,而且可以把它做成我们喜欢的可视化效果了,比如把它画在一个HTML5 <canvas> 画布上。

创建一个频率条形图节
另一种小巧的可视化方法是创建频率条形图,
现在让我们来看看它是如何实现的。

首先,我们设置好解析器和空数组,之后用 clearRect() 清空画布。与之前的唯一区别是我们这次大大减小了FFT的大小,这样做的原因是为了使得每个频率条足够宽,让它们看着像“条”而不是“细杆”。

analyser.fftSize = 256;
 var bufferLength = analyser.frequencyBinCount;
 console.log(bufferLength);
 var dataArray = new Uint8Array(bufferLength);
 canvasCtx.clearRect(0, 0, WIDTH, HEIGHT);

接下来我们写好 draw() 函数,再一次用 requestAnimationFrame() 设置一个循环,这样显示的数据就可以保持刷新,并且每一帧都清空一次画布。

function draw() {
  drawVisual = requestAnimationFrame(draw);
  analyser.getByteFrequencyData(dataArray);
  canvasCtx.fillStyle = 'rgb(0, 0, 0)';
  canvasCtx.fillRect(0, 0, WIDTH, HEIGHT);
  }

现在我们来设置一个 barWidth 变量,它等于每一个条形的宽度。理论上用花布宽度除以条的个数就可以得到它,但是在这里我们还要乘以2.5。这是因为有很多返回的频率区域中是没有声音的,我们每天听到的大多数声音也只是在一个很小的频率区域当中。在条形图中我们肯定不想看到大片的空白条,所以我们就把一些能正常显示的条形拉宽来填充这些空白区域。

我们还要设置一个条高度变量 barHeight,还有一个 x 变量来记录当前条形的位置。

var barWidth = (WIDTH / bufferLength) * 2.5;
var barHeight;
var x = 0;

像之前一样,我们进入循环来遍历 dataArray 数组中的数据。在每一次循环过程中,我们让条形的高度 barHeight 等于数组的数值,之后根据高度设置条形的填充色(条形越高,填充色越亮),然后在横坐标 x 处按照设置的宽度和高度的一半把条形画出来(我们最后决定只画高度的一半因为这样条形看起来更美观)。

需要多加解释的一点是每个条形竖直方向的位置,我们在 HEIGHT-barHeight/2 的位置画每一条,这是因为我想让每个条形从底部向上伸出,而不是从顶部向下(如果我们把竖直位置设置为0它就会这样画)。所以,我们把竖直位置设置为画布高度减去条形高度的一半,这样每个条形就会从中间向下画,直到画布最底部。

for(var i = 0; i < bufferLength; i++) {
  barHeight = dataArray[i]/2;
  canvasCtx.fillStyle = 'rgb(' + (barHeight+100) + ',50,50)';
  canvasCtx.fillRect(x,HEIGHT-barHeight/2,barWidth,barHeight);
  x += barWidth + 1;
  }
 };

和刚才一样,我们在最后调用 draw() 函数来开启整个可视化过程。

draw();

这些代码会带来下面的效果:

基于Web Audio API实现音频可视化效果

源码:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8"/>
 <title>可视化音乐播放器</title>
</head>
<body>
<input type="file" name="" value="" id="musicFile">
<p id="tip"></p>
<canvas id="casvased" width="500" height="500"></canvas>
</body>
<script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
<script type="text/javascript">
//随机变颜色
function randomRgbColor() { //随机生成RGB颜色
 var r = Math.floor(Math.random() * 256); //随机生成256以内r值
 var g = Math.floor(Math.random() * 256); //随机生成256以内g值
 var b = Math.floor(Math.random() * 256); //随机生成256以内b值
 return `rgb(${r},${g},${b})`; //返回rgb(r,g,b)格式颜色
}
//随机数 0-255
function sum (m,n){
  var num = Math.floor(Math.random()*(m - n) + n);
 
}
console.log(sum(0,100));
console.log(sum(100,255));
//展示音频可视化
var canvas = document.getElementById("casvased");
var canvasCtx = canvas.getContext("2d");
//首先实例化AudioContext对象 很遗憾浏览器不兼容,只能用兼容性写法;audioContext用于音频处理的接口,并且工作原理是将AudioContext创建出来的各种节点(AudioNode)相互连接,音频数据流经这些节点并作出相应处理。
//总结就一句话 AudioContext 是音频对象,就像 new Date()是一个时间对象一样
var AudioContext = window.AudioContext || window.webkitAudioContext || window.mozAudioContext;
if (!AudioContext) {
 alert("您的浏览器不支持audio API,请更换浏览器(chrome、firefox)再尝试,另外本人强烈建议使用谷歌浏览器!")
}
var audioContext = new AudioContext();//实例化
// 总结一下接下来的步骤
// 1 先获取音频文件(目前只支持单个上传)
// 2 读取音频文件,读取后,获得二进制类型的音频文件
// 3 对读取后的二进制文件进行解码
$('#musicFile').change(function(){
 if (this.files.length == 0) return;
 var file = $('#musicFile')[0].files[0];//通过input上传的音频文件
 var fileReader = new FileReader();//使用FileReader异步读取文件
 fileReader.readAsArrayBuffer(file);//开始读取音频文件
 fileReader.onload = function(e) {//读取文件完成的回调
 //e.target.result 即为读取的音频文件(此文件为二进制文件)
 //下面开始解码操作 解码需要一定时间,这个时间应该让用户感知到
 var count = 0;
 $('#tip').text('开始解码')
 var timer = setInterval(function(){
  count++;
  $('#tip').text('解码中,已用时'+count+'秒')
 },1000)
 //开始解码,解码成功后执行回调函数
 audioContext.decodeAudioData(e.target.result, function(buffer) {
  clearInterval(timer)
  $('#tip').text('解码成功,用时共计:'+count+'秒')
  // 创建AudioBufferSourceNode 用于播放解码出来的buffer的节点
  var audioBufferSourceNode = audioContext.createBufferSource();
  // 创建AnalyserNode 用于分析音频频谱的节点
  var analyser = audioContext.createAnalyser();
  //fftSize (Fast Fourier Transform) 是快速傅里叶变换,一般情况下是固定值2048。具体作用是什么我也不太清除,但是经过研究,这个值可以决定音频频谱的密集程度。值大了,频谱就松散,值小就密集。
  analyser.fftSize = 256;
  // 连接节点,audioContext.destination是音频要最终输出的目标,
  // 我们可以把它理解为声卡。所以所有节点中的最后一个节点应该再
  // 连接到audioContext.destination才能听到声音。
  audioBufferSourceNode.connect(analyser);
  analyser.connect(audioContext.destination);
  console.log(audioContext.destination)
  // 播放音频
  audioBufferSourceNode.buffer = buffer; //回调函数传入的参数
  audioBufferSourceNode.start(); //部分浏览器是noteOn()函数,用法相同
  //可视化 创建数据
  // var dataArray = new Uint8Array(analyser.fftSize);
  // analyser.getByteFrequencyData(dataArray)//将数据放入数组,用来进行频谱的可视化绘制
  // console.log(analyser.getByteFrequencyData)
  var bufferLength = analyser.frequencyBinCount;
  console.log(bufferLength);
  var dataArray = new Uint8Array(bufferLength);
  console.log(dataArray)
  canvasCtx.clearRect(0, 0, 500, 500);
  function draw() {
  drawVisual = requestAnimationFrame(draw);
  analyser.getByteFrequencyData(dataArray);
  canvasCtx.fillStyle = 'rgb(0, 0, 0)';
		//canvasCtx.fillStyle = ;
  canvasCtx.fillRect(0, 0, 500, 500);
  var barWidth = (500 / bufferLength) * 2.5;
  var barHeight;
  var x = 0;
  for(var i = 0; i < bufferLength; i++) {
   barHeight = dataArray[i];
		 //随机数0-255 Math.floor(Math.random()*255) 
		 // 随机数 10*Math.random()
   canvasCtx.fillStyle = 'rgb(' + (barHeight+100) + ','+Math.floor(Math.random()*(20- 120) + 120)+','+Math.floor(Math.random()*(10 - 50) + 50)+')';
   canvasCtx.fillRect(x,500-barHeight/2,barWidth,barHeight/2);
   x += barWidth + 1;
  }
  };
  draw();
 });
 }
})
</script>
</html>

 注意:

本文中的案例展现了 AnalyserNode.getByteFrequencyData() 和 AnalyserNode.getByteTimeDomainData() 的用法。如果想要查看AnalyserNode.getFloatFrequencyData() 和 AnalyserNode.getFloatTimeDomainData() 的用法,请参考我们的 Voice-change-O-matic-float-data 演示(也能看到 源代码 )――它和本文中出现的 Voice-change-O-matic 功能完全相同,唯一区别就是它使用的是浮点数作数据,而不是本文中的无符号整型数。

《参考:https://github.com/mdn/voice-change-o-matic  》
《案例一:https://mdn.github.io/voice-change-o-matic/  》
《案例二:http://margox.github.io/vudio.js/  》

总结