Hive中使用自定义函数(UDF)实现分析函数row_number的功能
之前部门实现row_number是使用的transform,我觉得用UDF实现后,平时的使用会更方便,免去了transform相对繁琐的语法。
用到的测试表为:
hive> desc row_number_test;
OK
id1 int
id2 string
age int
score double
name string
hive> select * from row_number_test;
OK
2 t04 25 60.0 youlia
1 t01 20 85.0 liujiannan
1 t02 24 70.0 zengqiu
2 t03 30 88.0 hongqu
2 t03 27 70.0 yongqi
1 t02 19 75.0 wangdong
1 t02 24 70.0 zengqiu
使用时要先在子查询中进行分区与排序,比如Oracle中这样一句SQL:
select row_number() over (partition by id1 order by age desc) from row_number_test;
转换为hive语句应该是:
select row_number(id1) from --partition by的字段传到row_number函数中去
(select * from row_number_test distribute by id1 sort by id1,age desc) a;
如果partition by 两个字段:
select row_number() over (partition by id1,id2 order by score) from row_number_test;
转换为hive语句应该是:
select row_number(id1,id2) --partition by的字段传到row_number函数中去
from (select * from row_number_test distribute by id1,id2 sort by id1,id2,score) a;
展示一下查询结果:
1.
select id1,id2,age,score,name,row_number(id1) rn from (select * from row_number_test distribute by id1 sort by id1,age desc) a;
OK
2 t03 30 88.0 hongqu 1
2 t03 27 70.0 yongqi 2
2 t04 25 60.0 youlia 3
1 t02 24 70.0 zengqiu 1
1 t02 24 70.0 zengqiu 2
1 t01 20 85.0 liujiannan 3
1 t02 19 75.0 wangdong 4
2.
select id1,id2,age,score,name,row_number(id1,id2) rn from (select * from row_number_test distribute by id1,id2 sort by id1,id2,score) a;
OK
2 t04 25 60.0 youlia 1
1 t02 24 70.0 zengqiu 1
2 t03 27 70.0 yongqi 1
1 t02 24 70.0 zengqiu 2
1 t02 19 75.0 wangdong 3
1 t01 20 85.0 liujiannan 1
2 t03 30 88.0 hongqu 2
下面是代码,只实现了接收1个参数和2个参数的evaluator方法,参数再多的照搬代码就可以了,代码仅供参考:
package com.Hadoopbook.hive;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.hive.ql.udf.UDFType;
@UDFType(deterministic = false)
public class Row_number extends UDF {
private static int MAX_VALUE = 50;
private static String comparedColumn[] = new String[MAX_VALUE];
private static int rowNum = 1;
public int evaluate (Object ...args){
String columnValue[] = new String[args.length];
for(int i=0;i<args.length;i++)
columnValue[i] = args[i].toString();
if (rowNum == 1)
{
for(int i=0;i<columnValue.length;i++)
comparedColumn[i] = columnValue[i];
}
for(int i=0;i<columnValue.length;i++)
{
if ( !comparedColumn[i].equals(columnValue[i]) )
{
for (int j=0;j<columnValue.length;j++)
{
comparedColumn[j] = columnValue[j];
}
rowNum = 1;
return rowNum++;
}
}
return rowNum++;
}
public static void main(String args[])
{
Row_number t = new Row_number();
System.out.println(t.evaluate(123));
System.out.println(t.evaluate(123));
System.out.println(t.evaluate(123));
System.out.println(t.evaluate(1234));
System.out.println(t.evaluate(1234));
System.out.println(t.evaluate(1234));
System.out.println(t.evaluate(1235));
}
}
Hive 的详细介绍:请点这里
Hive 的下载地址:请点这里
相关阅读: