【python(deap库)实现】GEAP 遗传算法/遗传编程 genetic programming +
目录
前言
本文不介绍原理的东西,主要是实现进化算法的python实现。
原理介绍可以看这里,能学习要很多,我也在这里写了一些感受心得:
遗传算法/遗传编程 进化算法基于python DEAP库深度解析讲解
1.优化问题的定义
单目标优化
creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0, ))
在创建单目标优化问题时,weights用来指示最大化和最小化。此处-1.0即代表问题是一个最小化问题,对于最大化,应将weights改为正数,如1.0。
另外即使是单目标优化,weights也需要是一个tuple,以保证单目标和多目标优化时数据结构的统一。
对于单目标优化问题,weights 的绝对值没有意义,只要符号选择正确即可。
多目标优化
creator.create(‘FitnessMulti‘, base.Fitness, weights=(-1.0, 1.0))
- 对于多目标优化问题,weights用来指示多个优化目标之间的相对重要程度以及最大化最小化。如示例中给出的(-1.0, 1.0)代表对第一个目标函数取最小值,对第二个目标函数取最大值。
2.个体编码
实数编码(Value encoding):直接用实数对变量进行编码。优点是不用解码,基因表达非常简洁,而且能对应连续区间。但是实数编码后搜索区间连续,因此容易陷入局部最优。
实数编码
from deap import base, creator, tools import random IND_SIZE = 5 creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0,)) #优化目标:单变量,求最小值 creator.create(‘Individual‘, list, fitness = creator.FitnessMin) #创建Individual类,继承list toolbox = base.Toolbox() toolbox.register(‘Attr_float‘, random.random) toolbox.register(‘Individual‘, tools.initRepeat, creator.Individual, toolbox.Attr_float, n=IND_SIZE) ind1 = toolbox.Individual() print(ind1) # 结果:[0.8579615693371493, 0.05774821674048369, 0.8812411734389638, 0.5854279538236896, 0.12908399219828248]
二进制编码
from deap import base, creator, tools from scipy.stats import bernoulli creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0,)) #优化目标:单变量,求最小值 creator.create(‘Individual‘, list, fitness = creator.FitnessMin) #创建Individual类,继承list GENE_LENGTH = 10 toolbox = base.Toolbox() toolbox.register(‘Binary‘, bernoulli.rvs, 0.5) #注册一个Binary的alias,指向scipy.stats中的bernoulli.rvs,概率为0.5 toolbox.register(‘Individual‘, tools.initRepeat, creator.Individual, toolbox.Binary, n = GENE_LENGTH) #用tools.initRepeat生成长度为GENE_LENGTH的Individual ind1 = toolbox.Individual() print(ind1) # 结果:[1, 0, 0, 0, 0, 1, 0, 1, 1, 0]
序列编码(Permutation encoding)
from deap import base, creator, tools import random creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) IND_SIZE=10 toolbox = base.Toolbox() toolbox.register("Indices", random.sample, range(IND_SIZE), IND_SIZE) toolbox.register("Individual", tools.initIterate, creator.Individual,toolbox.Indices) ind1 = toolbox.Individual() print(ind1) #结果:[0, 1, 5, 8, 2, 3, 6, 7, 9, 4]
粒子(Particles)
import random from deap import base, creator, tools creator.create("FitnessMax", base.Fitness, weights=(1.0, 1.0)) creator.create("Particle", list, fitness=creator.FitnessMax, speed=None, smin=None, smax=None, best=None) # 自定义的粒子初始化函数 def initParticle(pcls, size, pmin, pmax, smin, smax): part = pcls(random.uniform(pmin, pmax) for _ in range(size)) part.speed = [random.uniform(smin, smax) for _ in range(size)] part.smin = smin part.smax = smax return part toolbox = base.Toolbox() toolbox.register("Particle", initParticle, creator.Particle, size=2, pmin=-6, pmax=6, smin=-3, smax=3) #为自己编写的initParticle函数注册一个alias "Particle",调用时生成一个2维粒子,放在容器creator.Particle中,粒子的位置落在(-6,6)中,速度限制为(-3,3) ind1 = toolbox.Particle() print(ind1) print(ind1.speed) print(ind1.smin, ind1.smax) # 结果:[-2.176528549934324, -3.0796558214905] #[-2.9943676285620104, -0.3222138308543414] #-3 3 print(ind1.fitness.valid) # 结果:False # 因为当前还没有计算适应度函数,所以粒子的最优适应度值还是invalid
3 初始种群建立
一般族群
- 这是最常用的族群类型,族群中没有特别的顺序或者子族群。
from deap import base, creator, tools from scipy.stats import bernoulli # 定义问题 creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0,)) # 单目标,最小化 creator.create(‘Individual‘, list, fitness = creator.FitnessMin) # 生成个体 GENE_LENGTH = 5 toolbox = base.Toolbox() #实例化一个Toolbox toolbox.register(‘Binary‘, bernoulli.rvs, 0.5) toolbox.register(‘Individual‘, tools.initRepeat, creator.Individual, toolbox.Binary, n=GENE_LENGTH) # 生成初始族群 N_POP = 10 toolbox.register(‘Population‘, tools.initRepeat, list, toolbox.Individual) toolbox.Population(n = N_POP) # 结果: # [[1, 0, 1, 1, 0], # [0, 1, 1, 0, 0], # [0, 1, 0, 0, 0], # [1, 1, 0, 1, 0], # [0, 1, 1, 1, 1], # [0, 1, 1, 1, 1], # [1, 0, 0, 0, 1], # [1, 1, 0, 1, 0], # [0, 1, 1, 0, 1], # [1, 0, 0, 0, 0]]
同类群
- 同类群即一个族群中包含几个子族群。在有些算法中,会使用本地选择(Local selection)挑选育种个体,这种情况下个体仅与同一邻域的个体相互作用。
toolbox.register("deme", tools.initRepeat, list, toolbox.individual) DEME_SIZES = 10, 50, 100 population = [toolbox.deme(n=i) for i in DEME_SIZES]
粒子群
- 粒子群中的所有粒子共享全局最优。在实现时需要额外传入全局最优位置与全局最优适应度给族群。
creator.create("Swarm", list, gbest=None, gbestfit=creator.FitnessMax) toolbox.register("swarm", tools.initRepeat, creator.Swarm, toolbox.particle)
4 评价
评价部分是根据任务的特性高度定制的,DEAP库中并没有预置的评价函数模版。
在使用DEAP时,需要注意的是,无论是单目标还是多目标优化,评价函数的返回值必须是一个tuple类型。
from deap import base, creator, tools import numpy as np # 定义问题 creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0,)) #优化目标:单变量,求最小值 creator.create(‘Individual‘, list, fitness = creator.FitnessMin) #创建Individual类,继承list # 生成个体 IND_SIZE = 5 toolbox = base.Toolbox() toolbox.register(‘Attr_float‘, np.random.rand) toolbox.register(‘Individual‘, tools.initRepeat, creator.Individual, toolbox.Attr_float, n=IND_SIZE) # 生成初始族群 N_POP = 10 toolbox.register(‘Population‘, tools.initRepeat, list, toolbox.Individual) pop = toolbox.Population(n = N_POP) # 定义评价函数 def evaluate(individual): return sum(individual), #注意这个逗号,即使是单变量优化问题,也需要返回tuple # 评价初始族群 toolbox.register(‘Evaluate‘, evaluate) fitnesses = map(toolbox.Evaluate, pop) for ind, fit in zip(pop, fitnesses): ind.fitness.values = fit print(ind.fitness.values) # 结果: # (2.593989197511478,) # (1.1287944225903104,) # (2.6030877077096717,) # (3.304964061515382,) # (2.534627558467466,) # (2.4697149450205536,) # (2.344837782191844,) # (1.8959030773060852,) # (2.5192475334239,) # (3.5069764929866585,)
5 配种选择
- selTournament() 锦标赛选择
- selRoulette() 轮盘赌选择(不能用于最小化或者适应度会小于等于0的问题)
- selNSGA2() NSGA-II选择,适用于多目标遗传算法
- selSPEA2() SPEA2选择,目前版本(ver 1.2.2)的该函数实现有误,没有为个体分配距离,不建议使用。
- selRandom() 有放回的随机选择
- selBest() 选择最佳
- selWorst() 选择最差
- selTournamentDCD() Dominance/Crowding distance锦标赛选择,目前版本的实现也有些问题
- selDoubleTournament() Size+Fitness双锦标赛选择
- selStochasticUniversalSampling() 随机抽样选择
- selLexicase() 词典选择,参考这篇文章
- selEpsilonLexicase() 词典选择在连续值域上的扩展
from deap import base, creator, tools import numpy as np # 定义问题 creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0,)) #优化目标:单变量,求最小值 creator.create(‘Individual‘, list, fitness = creator.FitnessMin) #创建Individual类,继承list # 生成个体 IND_SIZE = 5 toolbox = base.Toolbox() toolbox.register(‘Attr_float‘, np.random.rand) toolbox.register(‘Individual‘, tools.initRepeat, creator.Individual, toolbox.Attr_float, n=IND_SIZE) # 生成初始族群 N_POP = 10 toolbox.register(‘Population‘, tools.initRepeat, list, toolbox.Individual) pop = toolbox.Population(n = N_POP) # 定义评价函数 def evaluate(individual): return sum(individual), #注意这个逗号,即使是单变量优化问题,也需要返回tuple # 评价初始族群 toolbox.register(‘Evaluate‘, evaluate) fitnesses = map(toolbox.Evaluate, pop) for ind, fit in zip(pop, fitnesses): ind.fitness.values = fit # 选择方式1:锦标赛选择 toolbox.register(‘TourSel‘, tools.selTournament, tournsize = 2) # 注册Tournsize为2的锦标赛选择 selectedTour = toolbox.TourSel(pop, 5) # 选择5个个体 print(‘锦标赛选择结果:‘) for ind in selectedTour: print(ind) print(ind.fitness.values) # 选择方式2: 轮盘赌选择 toolbox.register(‘RoulSel‘, tools.selRoulette) selectedRoul = toolbox.RoulSel(pop, 5) print(‘轮盘赌选择结果:‘) for ind in selectedRoul: print(ind) print(ind.fitness.values) # 选择方式3: 随机普遍抽样选择 toolbox.register(‘StoSel‘, tools.selStochasticUniversalSampling) selectedSto = toolbox.StoSel(pop, 5) print(‘随机普遍抽样选择结果:‘) for ind in selectedSto: print(ind) print(ind.fitness.values) #结果: #锦标赛选择结果: #[0.2673058115582905, 0.8131397980144155, 0.13627430737326807, 0.10792026110464248, 0.4166962522797264] #(1.741336430330343,) #[0.5448284697291571, 0.9702727117158071, 0.03349947770537576, 0.7018813286570782, 0.3244029157717422] #(2.5748849035791603,) #[0.8525836387058023, 0.28064482205939634, 0.9235436615033125, 0.6429467684175085, 0.5965523553349544] #(3.296271246020974,) #[0.5243293164960845, 0.37883291328325286, 0.28423194217619596, 0.5005947374376103, 0.3017896612109636] #(1.9897785706041071,) #[0.4038211036464676, 0.841374996509095, 0.3555644512425019, 0.5849111474726337, 0.058759891556433574] #(2.2444315904271317,) #轮盘赌选择结果: #[0.42469039733882064, 0.8411201950346711, 0.6322812691061555, 0.7566549973076343, 0.9352307652371067] #(3.5899776240243884,) #[0.42469039733882064, 0.8411201950346711, 0.6322812691061555, 0.7566549973076343, 0.9352307652371067] #(3.5899776240243884,) #[0.5448284697291571, 0.9702727117158071, 0.03349947770537576, 0.7018813286570782, 0.3244029157717422] #(2.5748849035791603,) #[0.630305953330188, 0.09565983206218687, 0.890691659939096, 0.8706091807317707, 0.19708949882847437] #(2.684356124891716,) #[0.5961060867498598, 0.4300051776616509, 0.4512760237511251, 0.047731561819711055, 0.009892120639829804] #(1.5350109706221766,) #随机普遍抽样选择结果: #[0.2673058115582905, 0.8131397980144155, 0.13627430737326807, 0.10792026110464248, 0.4166962522797264] #(1.741336430330343,) #[0.4038211036464676, 0.841374996509095, 0.3555644512425019, 0.5849111474726337, 0.058759891556433574] #(2.2444315904271317,) #[0.630305953330188, 0.09565983206218687, 0.890691659939096, 0.8706091807317707, 0.19708949882847437] #(2.684356124891716,) #[0.40659881466060876, 0.8387139101647804, 0.28504735705240236, 0.46171554118627334, 0.7843353275244066] #(2.7764109505884718,) #[0.42469039733882064, 0.8411201950346711, 0.6322812691061555, 0.7566549973076343, 0.9352307652371067] #(3.5899776240243884,)
6 变异
- cxOnePoint() 单点交叉 实数、二进制
- cxTwoPoint() 两点交叉 实数、二进制
- cxUniform() 均匀交叉 实数、二进制
- cxPartialyMatched() 部分匹配交叉PMX 序列
- cxUniformPartialyMatched() PMX变种,改两点为均匀交叉 序列
- cxOrdered() 有序交叉 序列
- cxBlend() 混合交叉 实数
- cxESBlend() 带进化策略的混合交叉
- cxESTwoPoint() 带进化策略的两点交叉
- cxSimulatedBinary() 模拟二值交叉 实数
- cxSimulatedBinaryBounded() 有界模拟二值交叉 实数
- cxMessyOnePoint() 混乱单点交叉 实数、二进制
from deap import base, creator, tools import random # 创建两个序列编码个体 random.seed(42) # 保证结果可复现 IND_SIZE = 8 creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0, )) creator.create(‘Individual‘, list, fitness = creator.FitnessMin) toolbox = base.Toolbox() toolbox.register(‘Indices‘, random.sample, range(IND_SIZE), IND_SIZE) toolbox.register(‘Individual‘, tools.initIterate, creator.Individual, toolbox.Indices) ind1, ind2 = [toolbox.Individual() for _ in range(2)] print(ind1, ‘\n‘, ind2) # 结果:[1, 0, 5, 2, 7, 6, 4, 3] # [1, 4, 3, 0, 6, 5, 2, 7] # 单点交叉 child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxOnePoint(child1, child2) print(child1, ‘\n‘, child2) #结果:[1, 4, 3, 0, 6, 5, 2, 7] # [1, 0, 5, 2, 7, 6, 4, 3] # 可以看到从第四位开始被切开并交换了 # 两点交叉 child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxTwoPoint(child1, child2) print(child1, ‘\n‘, child2) # 结果:[1, 0, 5, 2, 6, 5, 2, 3] # [1, 4, 3, 0, 7, 6, 4, 7] # 基因段[6, 5, 2]与[7, 6, 4]互换了 # 均匀交叉 child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxUniform(child1, child2, 0.5) print(child1, ‘\n‘, child2) # 结果:[1, 0, 3, 2, 7, 5, 4, 3] # [1, 4, 5, 0, 6, 6, 2, 7] # 部分匹配交叉 child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxPartialyMatched(child1, child2) print(child1, ‘\n‘, child2) # 结果:[1, 0, 5, 2, 6, 7, 4, 3] # [1, 4, 3, 0, 7, 5, 2, 6] # 可以看到与之前交叉算子的明显不同,这里的每个序列都没有冲突 # 有序交叉 child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxOrdered(child1, child2) print(child1, ‘\n‘, child2) # 结果:[5, 4, 3, 2, 7, 6, 1, 0] # [3, 0, 5, 6, 2, 7, 1, 4] # 混乱单点交叉 child1, child2 = [toolbox.clone(ind) for ind in (ind1, ind2)] tools.cxMessyOnePoint(child1, child2) print(child1, ‘\n‘, child2) # 结果:[1, 0, 5, 2, 7, 4, 3, 0, 6, 5, 2, 7] # [1, 6, 4, 3] # 注意个体序列长度的改变
7 突变
from deap import base, creator, tools import random # 创建一个实数编码个体 random.seed(42) # 保证结果可复现 IND_SIZE = 5 creator.create(‘FitnessMin‘, base.Fitness, weights=(-1.0, )) creator.create(‘Individual‘, list, fitness = creator.FitnessMin) toolbox = base.Toolbox() toolbox.register(‘Attr_float‘, random.random) toolbox.register(‘Individual‘, tools.initRepeat, creator.Individual, toolbox.Attr_float, IND_SIZE) ind1 = toolbox.Individual() print(ind1) # 结果:[0.6394267984578837, 0.025010755222666936, 0.27502931836911926, 0.22321073814882275, 0.7364712141640124] # 高斯突变 mutant = toolbox.clone(ind1) tools.mutGaussian(mutant, 3, 0.1, 1) print(mutant) # 结果:[3.672658632864655, 2.99827700737295, 3.2982590920597916, 3.339566606808737, 3.6626390539295306] # 可以看到当均值给到3之后,变异形成的个体均值从0.5也增大到了3附近 # 乱序突变 mutant = toolbox.clone(ind1) tools.mutShuffleIndexes(mutant, 0.5) print(mutant) # 结果:[0.22321073814882275, 0.7364712141640124, 0.025010755222666936, 0.6394267984578837, 0.27502931836911926] # 有界多项式突变 mutant = toolbox.clone(ind1) tools.mutPolynomialBounded(mutant, 20, 0, 1, 0.5) print(mutant) # 结果:[0.674443861742489, 0.020055418656044655, 0.2573977358171454, 0.11555018832942898, 0.6725269223692601] # 均匀整数突变 mutant = toolbox.clone(ind1) tools.mutUniformInt(mutant, 1, 5, 0.5) print(mutant) # 结果:[0.6394267984578837, 3, 0.27502931836911926, 0.22321073814882275, 0.7364712141640124] # 可以看到在第二个位置生成了整数3
8 环境选择
DEAP中没有设定专门的reinsertion操作。可以简单的用python的list操作来完成选择
相关推荐
oXiaoChong 2020-10-26
taiyangshenniao 2020-06-11
风吹夏天 2020-05-18
rein0 2020-04-21
seekerhit 2020-01-29
Happyunlimited 2020-01-29
laohyx 2020-01-23
ustbfym 2019-12-30
ustbfym 2019-11-08
lixiaotao 2019-11-03
yishujixiaoxiao 2019-11-03
tianbwin 2019-09-29
风吹夏天 2014-08-12
Broadview 2019-06-27
littletingting 2019-06-19
liuxiaohua 2019-06-20
duyifei0 2019-06-20
liuxiaohua 2019-06-20
hellosunshine 2017-11-14