动态规划基础篇之最长公共子序列问题
一些概念:
(1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列。也可以认为是从序列A按原顺序保留任意若干项得到的序列。
例如:
对序列 1,3,5,4,2,6,8,7来说,序列3,4,8,7 是它的一个子序列。
对于一个长度为n的序列,它一共有2^n 个子序列,有(2^n – 1)个非空子序列。
请注意:子序列不是子集,它和原始序列的元素顺序是相关的。
(2)公共子序列 : 顾名思义,如果序列C既是序列A的子序列,同时也是序列B的子序列,则称它为序列A和序列B的公共子序列。
例如:
对序列 1,3,5,4,2,6,8,7和序列 1,4,8,6,7,5 来说
序列1,8,7是它们的一个公共子序列。
请注意: 空序列是任何两个序列的公共子序列。
例如: 序列1,2,3和序列4,5,6的公共子序列只有空序列。
(3)最长公共子序列
A和B的公共子序列中长度最长的(包含元素最多的)叫做A和B的公共子序列。
仍然用序列1,3,5,4,2,6,8,7和序列1,4,8,6,7,5
它们的最长公共子序列是:
1,4,8,7
1,4,6,7
最长公共子序列的长度是4 。
请注意: 最长公共子序列不唯一。
请大家用集合的观点来理解这些概念,子序列、公共子序列以及最长公共子序列都不唯一,所以我们通常说一个最长公共子序列,但显然最长公共子序列的长度是一定的。
最长公共子序列问题就是求序列A= a1,a2,……an, 和B = b1,b2,……bm,的一个最长公共子序列。
因为最长公共子序列不唯一,让我们把问题简化,如何求出两个序列的最长公共子序列长度呢?
你首先能想到的恐怕是暴力枚举?那我们先来看看:序列A有 2^n 个子序列,序列B有 2^m 个子序列,如果任意两个子序列一一比较,比较的子序列高达 2^(n+m) 对,这还没有算具体比较的复杂度。
或许你说,只有长度相同的子序列才会真正进行比较。那么忽略空序列,我们来看看:对于A长度为1的子序列有C(n,1)个,长度为2的子序列有C(n,2)个,……长度为n的子序列有C(n,n)个。对于B也可以做类似分析,即使只对序列A和序列B长度相同的子序列做比较,那么总的比较次数高达:
C(n,1)*C(m,1)*1 + C(n,2) * C(m,2) * 2+ …+C(n,p) * C(m,p)*p
其中p = min(m, n)。
吓着了吧?怎么办?试试使用动态规划算法!
我们用Ax表示序列A的连续前x项构成的子序列,即Ax= a1,a2,……ax, By= b1,b2,……by, 我们用LCS(x, y)表示它们的最长公共子序列长度,那原问题等价于求LCS(m,n)。为了方便我们用L(x, y)表示Ax和By的一个最长公共子序列。
让我们来看看如何求LCS(x, y)。我们令x表示子序列考虑最后一项
(1) Ax = By
那么它们L(Ax, By)的最后一项一定是这个元素!
为什么呢?为了方便,我们令t = Ax = By, 我们用反证法:假设L(x,y)最后一项不是t,
则要么L(x,y)为空序列(别忘了这个),要么L(x,y)的最后一项是Aa=Bb ≠ t, 且显然有a < x, b < y。无论是哪种情况我们都可以把t接到这个L(x,y)后面,从而得到一个更长的公共子序列。矛盾!
如果我们从序列Ax中删掉最后一项ax得到Ax-1,从序列By中也删掉最后一项by得到By-1,(多说一句角标为0时,认为子序列是空序列),则我们从L(x,y)也删掉最后一项t得到的序列是L(x – 1, y - 1)。为什么呢?和上面的道理相同,如果得到的序列不是L(x - 1, y - 1),则它一定比L(x - 1, y - 1)短(注意L(,)是个集合!),那么它后面接上元素t得到的子序列L(x,y)也比L(x - 1, y - 1)接上元素t得到的子序列短,这与L(x, y)是最长公共子序列矛盾。
因此L(x, y) = L(x - 1, y - 1) 最后接上元素t
LCS(Ax, By) = LCS(x - 1, y - 1) + 1
(2) Ax ≠ By
仍然设t = L(Ax, By), 或者L(Ax, By)是空序列(这时t是未定义值不等于任何值)。
则t ≠ Ax和t ≠ By至少有一个成立,因为t不能同时等于两个不同的值嘛!
(2.1) 如果t ≠ Ax,则有L(x, y)= L(x - 1, y),因为根本没Ax的事嘛。
LCS(x,y) = LCS(x – 1, y)
(2.2) 如果t ≠ By,l类似L(x, y)= L(x , y - 1)
LCS(x,y) = LCS(x, y – 1)
可是,我们事先并不知道t,由定义,我们取最大的一个,因此这种情况下,有LCS(x,y) = max(LCS(x – 1, y) , LCS(x, y – 1))。
看看目前我们已经得到了什么结论:
LCS(x,y) =
(1) LCS(x - 1,y - 1) + 1 如果Ax = By
(2) max(LCS(x – 1, y) , LCS(x, y – 1)) 如果Ax ≠ By
这时一个显然的递推式,光有递推可不行,初值是什么呢?
显然,一个空序列和任何序列的最长公共子序列都是空序列!所以我们有:
LCS(x,y) =
(1) LCS(x - 1,y - 1) + 1 如果Ax = By
(2) max(LCS(x – 1, y) , LCS(x, y – 1)) 如果Ax ≠ By
(3) 0 如果x = 0或者y = 0
到此我们求出了计算最长公共子序列长度的递推公式。我们实际上计算了一个(n + 1)行(m + 1)列的表格(行是0..n,列是0..m),也就这个二维度数组LCS(,)。
大概的伪代码如下:
输入序列A, B长度分别为n,m,计算二维表 LCS(int,int):
- for x = 0 to n do
- for y = 0 to m do
- if (x == 0 || y == 0) then
- LCS(x, y) = 0
- else if (Ax == By) then
- LCS(x, y) = LCS(x - 1,y - 1) + 1
- else
- LCS(x, y) = ) max(LCS(x – 1, y) , LCS(x, y – 1))
- endif
- endfor
- endfor
注意: 我们这里使用了循环计算表格里的元素值,而不是递归,如果使用递归需要已经记录计算过的元素,防止子问题被重复计算。
现在问题来了,我们如何得到一个最长公共子序列而仅仅不是简单的长度呢?其实我们离真正的答案只有一步之遥!
仍然考虑那个递推式,我们LCS(x,y)的值来源的三种情况:
(1) LCS(x – 1, y – 1) + 1如果Ax = By
这对应L(x,y) = L(x,- 1 y- 1)末尾接上Ax
(2.1) LCS(x – 1, y) 如果Ax ≠ By且LCS(x – 1, y) ≥LCS(x, y – 1)
这对应L(x,y)= L(x – 1, y)
(2.2) LCS(x, y – 1) 如果Ax ≠ By且LCS(x – 1, y) <LCS(x, y – 1)
这对应L(x,y) = L(x, y – 1)
(3) 0 如果 x =0或者y = 0
这对应L(x,y)=空序列
注意(2.1)和(2.2) ,当LCS(x – 1, y) = LCS(x, y – 1)时,其实走哪个分支都一样,虽然长度时一样的,但是可能对应不同的子序列,所以最长公共子序列并不唯一。
神奇吧?又一个类似的递推公式。可见我们在计算长度LCS(x,y)的时候只要多记录一些信息,就可以利用这些信息恢复出一个最长公共子序列来。就好比我们在迷宫里走路,走到每个位置的时候记录下我们时从哪个方向来的,就可以从终点回到起点一样。
另外,说一下复杂度?
时间复杂度时O(n * m),空间也是O(n * m)
今天对LCS的讲解就到这里,聪明的你是不是已经蠢蠢欲动要AC问题啦? 心动不如行动,赶快吧。
在这里,本宝宝找到了两个模板,先收藏着,等过段在细细琢磨琢磨,有新的收获再补充。
代码一是让你输入两个序列,然后输出最长公共子序列和长度。
代码二是让你输入三个序列,然后输出最长公共子序列的长度。
代码一:
- #include <stdio.h>
- #include <string.h>
- #include <stdlib.h>
- int LCSLength(char* str1, char* str2, int **b)
- {
- int i,j,length1,length2,len;
- length1 = strlen(str1);
- length2 = strlen(str2);
- //双指针的方法申请动态二维数组
- int **c = new int*[length1+1]; //共有length1+1行
- for(i = 0; i < length1+1; i++)
- c[i] = new int[length2+1];//共有length2+1列
- for(i = 0; i < length1+1; i++)
- c[i][0]=0; //第0列都初始化为0
- for(j = 0; j < length2+1; j++)
- c[0][j]=0; //第0行都初始化为0
- for(i = 1; i < length1+1; i++)
- {
- for(j = 1; j < length2+1; j++)
- {
- if(str1[i-1]==str2[j-1])//由于c[][]的0行0列没有使用,c[][]的第i行元素对应str1的第i-1个元素
- {
- c[i][j]=c[i-1][j-1]+1;
- b[i][j]=0; //输出公共子串时的搜索方向
- }
- else if(c[i-1][j]>c[i][j-1])
- {
- c[i][j]=c[i-1][j];
- b[i][j]=1;
- }
- else
- {
- c[i][j]=c[i][j-1];
- b[i][j]=-1;
- }
- }
- }
- /*
- for(i= 0; i < length1+1; i++)
- {
- for(j = 0; j < length2+1; j++)
- printf("%d ",c[i][j]);
- printf("");
- }
- */
- len=c[length1][length2];
- for(i = 0; i < length1+1; i++) //释放动态申请的二维数组
- delete[] c[i];
- delete[] c;
- return len;
- }
- void PrintLCS(int **b, char *str1, int i, int j)
- {
- if(i==0 || j==0)
- return ;
- if(b[i][j]==0)
- {
- PrintLCS(b, str1, i-1, j-1);//从后面开始递归,所以要先递归到子串的前面,然后从前往后开始输出子串
- printf("%c",str1[i-1]);//c[][]的第i行元素对应str1的第i-1个元素
- }
- else if(b[i][j]==1)
- PrintLCS(b, str1, i-1, j);
- else
- PrintLCS(b, str1, i, j-1);
- }
- int main(void)
- {
- char str1[100],str2[100];
- int i,length1,length2,len;
- printf("请输入第一个字符串:");
- gets(str1);
- printf("请输入第二个字符串:");
- gets(str2);
- length1 = strlen(str1);
- length2 = strlen(str2);
- //双指针的方法申请动态二维数组
- int **b = new int*[length1+1];
- for(i= 0; i < length1+1; i++)
- b[i] = new int[length2+1];
- len=LCSLength(str1,str2,b);
- printf("最长公共子序列的长度为:%d",len);
- printf("最长公共子序列为:");
- PrintLCS(b,str1,length1,length2);
- printf("");
- for(i = 0; i < length1+1; i++)//释放动态申请的二维数组
- delete[] b[i];
- delete[] b;
- system("pause");
- return 0;
- }
代码二:
- #include <stdio.h>
- #include <string.h>
- #include <stdlib.h>
- int max1(int m,int n)
- {
- if(m>n)
- return m;
- else
- return n;
- }
- int max2(int x,int y,int z,int k,int m,int n)
- {
- int max=-1;
- if(x>max)
- max=x;
- if(y>max)
- max=y;
- if(z>max)
- max=z;
- if(k>max)
- max=k;
- if(m>max)
- max=m;
- if(n>max)
- max=n;
- return max;
- }
- int LCSLength(char* str1, char* str2, char* str3) //求得三个字符串的最大公共子序列长度并输出公共子序列
- {
- int i,j,k,length1,length2,length3,len;
- length1 = strlen(str1);
- length2 = strlen(str2);
- length3 = strlen(str3);
- //申请动态三维数组
- int ***c = new int**[length1+1]; //共有length1+1行
- for(i = 0; i < length1+1; i++)
- {
- c[i] = new int*[length2+1]; //共有length2+1列
- for(j = 0; j<length2+1; j++)
- c[i][j] = new int[length3+1];
- }
- for(i = 0; i < length1+1; i++)
- {
- for(j = 0; j < length2+1; j++)
- c[i][j][0]=0;
- }
- for(i = 0; i < length2+1; i++)
- {
- for(j = 0; j < length3+1; j++)
- c[0][i][j]=0;
- }
- for(i = 0; i < length1+1; i++)
- {
- for(j = 0; j < length3+1; j++)
- c[i][0][j]=0;
- }
- for(i = 1; i < length1+1; i++)
- {
- for(j = 1; j < length2+1; j++)
- {
- for(k = 1; k < length3+1; k++)
- {
- if(str1[i-1]==str2[j-1] && str2[j-1]==str3[k-1])
- c[i][j][k]=c[i-1][j-1][k-1]+1;
- else if(str1[i-1]==str2[j-1] && str1[i-1]!=str3[k-1])
- c[i][j][k]=max1(c[i][j][k-1],c[i-1][j-1][k]);
- else if(str1[i-1]==str3[k-1] && str1[i-1]!=str2[j-1])
- c[i][j][k]=max1(c[i][j-1][k],c[i-1][j][k-1]);
- else if(str2[j-1]==str3[k-1] && str1[i-1]!=str2[j-1])
- c[i][j][k]=max1(c[i-1][j][k],c[i][j-1][k-1]);
- else
- {
- c[i][j][k]=max2(c[i-1][j][k],c[i][j-1][k],c[i][j][k-1],c[i-1][j-1][k],c[i-1][j][k-1],c[i][j-1][k-1]);
- }
- }
- }
- }
- len=c[length1][length2][length3];
- for(i = 1; i < length1+1; i++) //释放动态申请的三维数组
- {
- for(j = 1; j < length2+1; j++)
- delete[] c[i][j];
- delete[] c[i];
- }
- delete[] c;
- return len;
- }
- int main(void)
- {
- char str1[100],str2[100],str3[100];
- int len;
- printf("请输入第一个字符串:");
- gets(str1);
- printf("请输入第二个字符串:");
- gets(str2);
- printf("请输入第三个字符串:");
- gets(str3);
- len=LCSLength(str1,str2,str3);
- printf("最长公共子序列的长度为:%d",len);
- system("pause");
- return 0;
- }