一致性哈希算法

一致性哈希算法,是1997年麻省理工学院提出,用来解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。不同的是,一致性哈希修正了CARP使用简单哈希算法中未决的问题,是第一个实用的DHT算法。

一致性哈希算法有4个特点:

1. 平衡性(Balance)

指哈希的结果尽可能分布到所有的缓冲中,使所有的Cache都得到利用,这一点多数Hash算法基本上都已实现了。

2. 单调性(Monotonicity)

指在加入新的Cache后,原有的分配key值应该指到新的Cache。简单的哈希算法不能满足这一要求。

3. 分散性(Spread)

指相同的数据,由不同的终端来映射到缓冲中时,应该映射到同一个缓冲。

4. 负载(Load)

是相对于分散性而说,每一个缓冲,不能被不同的客户端映射成不同的内容。

在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(key) mod N算法(key是数据的key,N是机器节点数),那么有机器添加或者删除后,大量的缓存命不中,缓存数据需要重新建立,甚至是进行整体的缓存数据迁移,瞬间会给DB带来极高的系统负载,设置导致DB服务器宕机。

设计分布式cache系统时,一致性hash算法可以帮我们解决哪些问题?

   分布式缓存设计核心点:在设计分布式cache系统的时候,我们需要让key的分布均衡,并且在增加cache server后,cache的迁移做到最少。

一致性哈希算法的实现:

1.  建立环形空间

首先建立一个存储机器节点和key的环形空间,环形空间的数值介于0~(2^32)-1之间。
                                                                         一致性哈希算法
2. 把数据通过一定的hash算法处理后映射到环上
现在我们将object1、object2、object3、object4四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环形空间上。如下图:
    Hash(object1) = key1;
    Hash(object2) = key2;
    Hash(object3) = key3;
    Hash(object4) = key4;
                                                           一致性哈希算法
3.  将机器通过hash算法映射到环上
在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环中(一般情况下对机器的hash计算是采用机器的IP或者机器唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。
假设现在有NODE1,NODE2,NODE3三台机器,通过Hash算法得到对应的KEY值,映射到环中,其示意图如下:
Hash(NODE1) = KEY1;
Hash(NODE2) = KEY2;
Hash(NODE3) = KEY3;
                                                             一致性哈希算法
通过上图可以看出对象与机器处于同一哈希空间中,这样按顺时针转动object1存储到了NODE1中,object3存储到了NODE2中,object2、object4存储到了NODE3中。在这样的部署环境中,hash环是不会变更的,因此,通过算出对象的hash值就能快速的定位到对应的机器中,这样就能找到对象真正的存储位置了。
4.  机器的删除与添加
普通hash求余算法最为不妥的地方就是在有机器的添加或者删除之后会照成大量的对象存储位置失效,这样就大大的不满足单调性了。下面来分析一下一致性哈希算法是如何处理的。
1. 节点(机器)的删除
    以上面的分布为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其它的对象没有任何的改动。如下图:
                                                              一致性哈希算法
2. 节点(机器)的添加 
    如果往集群中添加一个新的节点NODE4,通过对应的哈希算法得到KEY4,并映射到环中,如下图:
                                                              一致性哈希算法
    通过按顺时针迁移的规则,那么object2被迁移到了NODE4中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。
 
5. 使用虚拟节点实现平衡性
根据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为还缺少了平衡性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的图),object1存储到了NODE1中,而object2、object3、object4都存储到了NODE3中,这样就照成了非常不平衡的状态。在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。
    ——“虚拟节点”( virtual node )是实际节点(机器)在 hash 空间的复制品( replica ),一实际个节点(机器)对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以hash值排列。
以上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(复制个数)为例,这样整个hash环中就存在了4个虚拟节点,最后对象映射的关系图如下:
                                                                 一致性哈希算法
根据上图可知对象的映射关系:object1->NODE1-1,object2->NODE1-2,object3->NODE3-2,object4->NODE3-1。通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,正真的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:
                                         一致性哈希算法
“虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算 cache A 的 hash 值:
Hash(“192.168.1.100”);
引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:
Hash(“192.168.1.100#1”); // NODE1-1
Hash(“192.168.1.100#2”); // NODE1-2
public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等

	private TreeMap<Long, S> nodes; // 虚拟节点
	private List<S> shards; // 真实机器节点
	private final int NODE_NUM = 100; // 每个机器节点关联的虚拟节点个数

	public Shard(List<S> shards) {
		super();
		this.shards = shards;
		init();
	}

	private void init() { // 初始化一致性hash环
		nodes = new TreeMap<Long, S>();
		for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点
			final S shardInfo = shards.get(i);

			for (int n = 0; n < NODE_NUM; n++)
				// 一个真实机器节点关联NODE_NUM个虚拟节点
				nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo);

		}
	}

	public S getShardInfo(String key) {
		SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点
		if (tail.size() == 0) {
			return nodes.get(nodes.firstKey());
		}
		return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息
	}

	/**
	 *  MurMurHash算法,是非加密HASH算法,性能很高,
	 *  比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免)
	 *  等HASH算法要快很多,而且据说这个算法的碰撞率很低.
	 *  http://murmurhash.googlepages.com/
	 */
	private Long hash(String key) {
		
		ByteBuffer buf = ByteBuffer.wrap(key.getBytes());
		int seed = 0x1234ABCD;
		
		ByteOrder byteOrder = buf.order();
        buf.order(ByteOrder.LITTLE_ENDIAN);

        long m = 0xc6a4a7935bd1e995L;
        int r = 47;

        long h = seed ^ (buf.remaining() * m);

        long k;
        while (buf.remaining() >= 8) {
            k = buf.getLong();

            k *= m;
            k ^= k >>> r;
            k *= m;

            h ^= k;
            h *= m;
        }

        if (buf.remaining() > 0) {
            ByteBuffer finish = ByteBuffer.allocate(8).order(
                    ByteOrder.LITTLE_ENDIAN);
            // for big-endian version, do this first:
            // finish.position(8-buf.remaining());
            finish.put(buf).rewind();
            h ^= finish.getLong();
            h *= m;
        }

        h ^= h >>> r;
        h *= m;
        h ^= h >>> r;

        buf.order(byteOrder);
        return h;
	}

}
 

 一致性哈希基本解决了在P2P环境中最为关键的问题——如何在动态的网络拓扑中分布存储和路由。每个节点仅需维护少量相邻节点的信息,并且在节点加入/退出系统时,仅有相关的少量节点参与到拓扑的维护中。所有这一切使得一致性哈希成为第一个实用的DHT算法。

概念:

DHT: Distributed Hash Table,分布式哈希表,是一种分布式存储方法。

CARP :Common Access Redundancy Protocol,共用地址冗余协议,或简称 CARP 能够使多台主机共享同一 IP 地址。

参考: 

一致性哈希算法与Java实现

memcache的一致性hash算法使用

五分钟理解一致性哈希算法(consistent hashing)

相关推荐