深度神经网络原理与实践
理论基础
什么是神经网络
我们知道深度学习是机器学习的一个分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。而深度神经网络又是深度学习的一个分支,它在 wikipedia 上的解释如下:
深度神经网络(Deep Neural Networks, DNN)是一种判别模型,具备至少一个隐层的神经网络,可以使用反向传播算法进行训练。权重更新可以使用下式进行随机梯度下降法求解。
首先我们可以知道,深度神经网络是一种判别模型。意思就是已知变量 x ,通过判别模型可以推算出 y。比如机器学习中常用到的案例,通过手写数字,模型推断出手写的是数字几。
深度神经网络中的“深度”指的是一系列连续的表示层,数据模型中包含了多少层,这就被称为模型的“深度”。通过这些层我们可以对数据进行高层的抽象。如下图所示,深度神级网络由一个输入层,多个(至少一个)隐层,以及一个输出层构成,而且输入层与输出层的数量不一定是对等的。每一层都有若干个神经元,神经元之间有连接权重。
还是上面的案例,识别手写数字,手写的数字要怎么转成输入呢?既然是手写,那么肯定是一张图片,图片由多个像素点组成,这些像素点可以构成一个输入,经过多层神经网络,输出10个数字,这个10个数字就代表了数字 0 ~ 9 的概率。
神经元如何输入输出
神经网络中的每个神经元都可以看成是一个简单的线性函数,下面我们构造一个简单的三层的神经网络来看看。
如上图所示,n1 可以表示为:
$$n_1 = w_{1,1}x_1 + w_{2,1}x_2 + w_{3,1}x_3 + b$$
其中 w_{1,1}
表示神经元之间的权重,b 为一个常量,作为函数的偏移量。较小的权重可以弱化某个神经元对下一个神经元造成的影响,而较大的权重将放大信号。假设 w_{1,1}
为 0.1,w_{3,1}
为 0.7,那么 x3 对 n1 的影响要大于 x1。你可能会问,为什么每个神经元要与其他所有层的神经元相互连接?
这里主要由两个原因:
- 完全连接的形式相对容易的编写成计算机指令。
- 在神经网络训练的过程中会弱化实际上不需要的连接(也就是某些连接权重会慢慢趋近于 0)。
实际上通过计算得到 n1 后,其实不能立马用于后面的计算,还需要经过一个激活函数(一般为 sigmod 函数)。
其作用主要是引入非线性因素。如果神级网络中只有上面那种线性函数,无论有多少层,结果始终是线性的。
实际案例
为了方便计算,我们构造一个只有两层的神经网络,演示一下具体的计算过程。
先通过线性函数求得一个 x 值,再把 x 值带入激活函数,得到 y1 的值。
$$x = w_{1,1}x_1 + w_{2,1}x_2 = (1.0 * 0.9) + (0.5 * 0.3) = 1.05$$
$$y_1 = 1 / (1 + e ^{-x}) = 1 / (1 + 0.3499) = 0.7408$$
矩阵乘法
其实上面的计算过程,很容易通过矩阵乘法的方式表示。矩阵这个东西,说简单点就是一个表格,或者一个二维数组。如下图所示,就是一个典型的矩阵。
那么矩阵的乘法可以表示为:
矩阵的乘法通常被成为点乘或者内积。如果我们将矩阵内的数字换成我们神经网络的输入和权重,你会发现原来前面的计算如此简单。
获得点积后,只需要代入到激活函数,就能获得输出了。
通过矩阵计算过程可以表示为:
$$X_{hidden} = W_{input\_hidden} · I_{input}O_{hidden} = sigmoid(X_{hidden})$$
实际案例
下面通过矩阵来表示一个三层神经网络的计算过程。
上图只给出了输入层到隐层的计算过程,感兴趣可以自己手动计算下,隐层到输出层的计算过程。隐层到输出层的权重矩阵如下:
反向传播
进过一轮神经网络计算得到输出值,通常与我们实际想要的值是不一致的,这个时候我们会得到一个误差值(误差值就是训练数据给出的正确答案与实际输出值之间的差值)。但是这个误差是多个节点共同作用的结果,我们到底该用何种方式来更新各个连接的权重呢?这个时候我们就需要通过反向传播的方式,求出各个节点的误差值。
下面我们代入具体值,进行一次计算。
上图中可以看到 e_1
的误差值主要由 w_{1,1}
和 w_{2,1}
造成,那么其误差应当分散到两个连接上,可以按照两个连接的权重对误差 e_1
进行分割。
$$e_1 * \frac{w_{1,1}}{w_{1,1} + w_{2,1}} = 0.8 * \frac{2}{2 + 3} = 0.32e_1 * \frac{w_{2,1}}{w_{1,1} + w_{2,1}} = 0.8 * \frac{3}{2 + 3} = 0.48$$
同理对误差 e_2
进行分割,然后把两个连接处的误差值相加,就能得到输出点的前馈节点的误差值。
然后在按照之前的方法将这个误差传播到前面的层,直到所有节点都能得到自己的误差值,这种方式被成为反向传播。
使用矩阵乘法进行反向传播误差
上面如此繁琐的操作,我们也可以通过矩阵的方式进行简化。
这个矩阵中还是有麻烦的分数需要处理,那么我们能不能大胆一点,将分母直接做归一化的处理。这么做我们仅仅只是改变了反馈误差的大小,其误差依旧是按照比例来计算的。
仔细观察会发现,与我们之前计算每层的输出值的矩阵点击很像,只是权重矩阵进行翻转,右上方的元素变成了左下方的元素,我们可以称其为转置矩阵,记为 w^T
。
反向传播误差的矩阵可以简单表示为:
$$error_{hidden} = W^{T}_{hidden\_output} · error_{output}$$
梯度下降
在每个点都得到误差后,我们该按照何种方式来更新权重呢?
这个时候就要使用到机器学习中常用的方式:梯度下级。
更多细节可以参考我之前写的博客:梯度下降与线性回归
通过不停的训练,我们就能改进神经网络,其本质就是不断地改变权重的大小,减小神经网络输出的误差值。
最后就能够得到一个多层神经网络的模型,通过输入进行有效的预测。
实战
环境准备
首先需要安装 python3 ,直接去 python 官网安装,尽量安装最新版,不推荐安装 python2 。安装好 python 环境之后,然后安装 virtualenv 以及相关依赖。
# 升级 pip 到最新版本 pip3 install --upgrade pip # 安装 virtualenv ,用于配置虚拟环境 pip3 install --user --upgrade virtualenv
正常情况下,当我们在使用 pip 进行包安装的时候,都是安装的全局包,相当于npm install -g
。假如现在有两个项目,项目 A 依赖 simplejson@2 ,项目 B 依赖 simplejson@3,这样我们在一台机器上开发显得有些手足无措。这个时候 virtualenv 就能大展身手了,virtualenv 可以创建一个独立的 python 运行环境,也就是一个沙箱,你甚至可以在 virtualenv 创建的虚拟环境中使用与当前系统不同的 python 版本。
# 配置虚拟环境 cd ~/ml virtualenv env # 启动虚拟环境 # linux source env/bin/activate # windows ./env/Scripts/activate
启动后,如下
(env) λ
在虚拟环境下安装所有模块依赖。
# 安装模块和依赖 (env) λ pip3 install --upgrade jupyter matplotlib numpy scipy
- jupyter:基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。
- numpy:数组计算扩展的包,支持高维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
- scipy:基于numpy的扩展包,它增加的功能包括数值积分、最优化、统计和一些专用函数。
- matplotlib:基于numpy的扩展包,提供了丰富的数据绘图工具,主要用于绘制一些统计图形。
- scikit-learn:开源的Python机器学习库,它基于Numpy和Scipy,提供了大量用于数据挖掘和分析的工具,包括数据预处理、交叉验证、算法与可视化算法等一系列接口。
启动 jupyter
jupyter notebook
jupyter 会在8888端口起一个服务,并自动打开浏览器。
通过右上角的new,你就能创建一个项目了。创建项目后,我们很方便的在该页面上进行 python 代码的运行与输出。
准备数据
MNIST 是由美国的高中生和美国人口调查局的职员手写数字(0 ~ 9)图片。接下来要做的事情就是让我们的程序学习这些图片的信息,能够识别出输入的图片所代表的数字含义,这听上去好像有点难度,不着急,我们一步步来。
这里准备了 MNIST 的训练数据,其中 train_100
为训练数据集,test_10
为测试数据集。在机器学习的过程中,我们一般会将数据集切分成两个,分别为训练集合测试集,一般 80% 的数据进行训练,保留 20% 用于测试。这里因为是 hello world 操作,我们只用 100 个数据进行训练,真实情况下,这种数据量是远远不够的。
如果想用完整的数据进行训练,可以下载这个 csv 文件。
https://pjreddie.com/media/files/mnist_train.csv
观察数据
下载数据后,将 csv (逗号分隔值文件格式)文件放入到 datasets 文件夹,然后使用 python 进行文件的读取。
data_file = open("datasets/mnist_train_100.csv", 'r') data_list = data_file.readlines() # readlines方法用于读取文件的所有行,并返回一个数组 data_file.close() len(data_list) # 数组长度为100
打印第一行文本,看看数据的格式是怎么样的
print(data_list[0]) len(data_list[0].split(',')) # 使用 , 进行分割,将字符串转换为数组
可以看到一行数据一共有 785 个数据,第一列表示这个手写数的真实值(这个值在机器学习中称为标签),后面的 784 个数据表示一个 28 * 28 的尺寸的像素值,流行的图像处理软件通常用8位表示一个像素,这样总共有256个灰度等级(像素值在0~255 间),每个等级代表不同的亮度。
下面我们导入 numpy 库,对数据进行处理,values[1:] 取出数组的第一位到最后并生成一个新的数组,使用 numpy.asfarray 将数组转为一个浮点类型的 ndarray,然后每一项除以 255 在乘以 9,将每个数字转为 0 ~ 9 的个位数,使用 astype(int) 把每个数再转为 int 类型,最后 reshape((28,28) 可以把数组转为 28 * 28 的二维数组。
如果想了解更多 numpy 的资料,可以查看它的文档。
import numpy as np values = data_list[3].split(',') image_array = (np.asfarray(values[1:]) / 255 * 9).astype(int).reshape(28,28)
这样看不够直观,接下来使用 matplotlib ,将像素点一个个画出来。
import matplotlib.pyplot %matplotlib inline matplotlib.pyplot.imshow( np.asfarray(values[1:]).reshape(28,28), cmap='Greys', interpolation='None' )
搭建神经网络
我们简单勾勒出神经网络的大概样子,至少需要三个函数:
- 初始化函数——设定输入层、隐藏层、输出层节点的数量,随机生成的权重。
- 训练——学习给定的训练样本,调整权重。
- 查询——给定输入,获取预测结果。
框架代码如下:
# 引入依赖库 import numpy as np import scipy.special import matplotlib.pyplot # 神经网络类定义 class neuralNetwork: # 初始化神经网络 def __init__(): pass # 训练神经网络 def train(): pass # 查询神经网络 def query(): pass
初始化神经网络
接下来让我们进行第一步操作,初始化一个神经网络。
# 初始化神经网络 def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate): # 设置输入层、隐藏层、输出层节点的数量 self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # 连接权重,随机生成输入层到隐藏层和隐藏层到输出层的权重 self.wih = np.random.rand(self.hnodes, self.inodes) - 0.5 self.who = np.random.rand(self.onodes, self.hnodes) - 0.5 # 学习率 self.lr = learningrate # 将激活函数设置为 sigmoid 函数 self.activation_function = lambda x: scipy.special.expit(x) pass
生成权重
生成连接权重使用 numpy
函数库,该库支持大维度数组以及矩阵的运算,通过numpy.random.rand(x, y)
可以快速生成一个 x * y
的矩阵,每个数字都是一个 0 ~ 1 的随机数。因为导入库的时候使用了 import numpy as np
命令,所有代码中可以用 np
来代替 numpy
。
上面就是通过 numpy.random.rand
方法生成一个 3 * 3
矩阵的案例。减去0.5是为了保证生成的权重所有权重都能维持在 -0.5 ~ 0.5 之间的一个随机值。
激活函数
scipy.special
模块中包含了大量的函数库,利用 scipy.special
库可以很方便快捷的构造出一个激活函数:
activation_function = lambda x: scipy.special.expit(x)
查询神经网络
# 查询神经网络 def query(self, inputs_list): # 将输入的数组转化为一个二维数组 inputs = np.array(inputs_list, ndmin=2).T # 计算输入数据与权重的点积 hidden_inputs = np.dot(self.wih, inputs) # 经过激活函数的到隐藏层数据 hidden_outputs = self.activation_function(hidden_inputs) # 计算隐藏层数据与权重的点积 final_inputs = np.dot(self.who, hidden_outputs) # 最终到达输出层的数据 final_outputs = self.activation_function(final_inputs) return final_outputs
查询神经网络的操作很简单,只需要使用 numpy
的 dot
方法对两个矩阵求点积即可。
这里有一个知识点,就是关于 numpy
的数据类型,通过 numpy.array
方法能够将 python 中的数组转为一个 N 维数组对象 Ndarray
,该方法第二个参数就是表示转化后的维度。
上图是一个普通数组 [1, 2, 3]
使用该方法转变成二维数组,返回 [[1, 2, 3]]
。该方法还有个属性 T,本质是调用 numpy
的 transpose
方法,对数组进行轴对换,如下图所示。
通过转置我们就能得到一个合适的输入矩阵了。
训练神经网络
# 训练神经网络 def train(self, inputs_list, targets_list): # 将输入数据与目标数据转为二维数组 inputs = np.array(inputs_list, ndmin=2).T targets = np.array(targets_list, ndmin=2).T # 通过矩阵点积和激活函数得到隐藏层的输出 hidden_inputs = np.dot(self.wih, inputs) hidden_outputs = self.activation_function(hidden_inputs) # 通过矩阵点积和激活函数得到最终输出 final_inputs = np.dot(self.who, hidden_outputs) final_outputs = self.activation_function(final_inputs) # 获取目标值与实际值的差值 output_errors = targets - final_outputs # 反向传播差值 hidden_errors = np.dot(self.who.T, output_errors) # 通过梯度下降法更新隐藏层到输出层的权重 self.who += self.lr * np.dot( (output_errors * final_outputs * (1.0 - final_outputs)), np.transpose(hidden_outputs) ) # 通过梯度下降法更新输入层到隐藏层的权重 self.wih += self.lr * np.dot( (hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(inputs) ) pass
训练神经网络前半部分与查询类似,中间会将得到的差值通过求矩阵点积的方式进行反向传播,最后就是使用梯度下级的方法修正权重。其中 self.lr
为梯度下降的学习率,这个值是限制梯度方向的速率,我们需要经常调整这个值来达到模型的最优解。
进行训练
# 设置每一层的节点数量 input_nodes = 784 hidden_nodes = 100 output_nodes = 10 # 学习率 learning_rate = 0.1 # 创建神经网络模型 n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate) # 加载训练数据 training_data_file = open("datasets/mnist_train_100.csv", 'r') training_data_list = training_data_file.readlines() training_data_file.close() # 训练神经网络 # epochs 表示训练次数 epochs = 10 for e in range(epochs): # 遍历所有数据进行训练 for record in training_data_list: # 数据通过 ',' 分割,变成一个数组 all_values = record.split(',') # 分离出图片的像素点到一个单独数组 inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # 创建目标输出值(数字 0~9 出现的概率,默认全部为 0.01) targets = np.zeros(output_nodes) + 0.01 # all_values[0] 表示手写数字的真实值,将该数字的概率设为 0.99 targets[int(all_values[0])] = 0.99 n.train(inputs, targets) pass pass # 训练完毕 print('done')
验证训练结果
# 加载测试数据 test_data_file = open("datasets/mnist_test_10.csv", 'r') test_data_list = test_data_file.readlines() test_data_file.close() # 测试神经网络 # 记录所有的训练值,正确存 1 ,错误存 0 。 scorecard = [] # 遍历所有数据进行测试 for record in test_data_list: # 数据通过 ',' 分割,变成一个数组 all_values = record.split(',') # 第一个数字为正确答案 correct_label = int(all_values[0]) # 取出测试的输入数据 inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # 查询神经网络 outputs = n.query(inputs) # 取出概率最大的数字,表示输出 label = np.argmax(outputs) # 打印出真实值与查询值 print('act: ', label, ' pre: ', correct_label) if (label == correct_label): # 神经网络查询结果与真实值匹配,记录数组存入 1 scorecard.append(1) else: # 神经网络查询结果与真实值不匹配,记录数组存入 0 scorecard.append(0) pass pass # 计算训练的成功率 scorecard_array = np.asarray(scorecard) print("performance = ", scorecard_array.sum() / scorecard_array.size)
完整代码
要查看完整代码可以访问我的 github: deep_neural_network
总结
到这里整个深度神级网络的模型原理与实践已经全部进行完毕了,虽然有些部分概念讲解并不是那么仔细,但是你还可以通过搜索其他资料了解更多。感谢《Python神经网络编程》这本书,因为它才有了这个博客,如果感兴趣你也可以买来看看,这本书真的用很简单的语言描述了复杂的数学计算。
人工智能现在确实是一个非常火热的阶段,希望感兴趣的同学们多多尝试,但是也不要一昧的追新,忘记了自己本来的优势。
最后附上原文链接:深度神经网络原理与实践