数值分析实验之线性方程组的迭代求解(Python实现)
详细实验指导见上一篇,此处只写内容啦
实验内容: 求解如下4元线性方程组的近似解。
• Jacobi迭代过程
import numpy as np A = np.array([[10,-1,2,0],[-1,11,-1,3],[2,-1,10,-1],[0,3,-1,8]]) B = np.array([6, 25, -11, 15]) x0 = np.array([0.0, 0, 0, 0]) x = np.array([0.0, 0, 0, 0]) times = 0 while True: for i in range(4): temp = 0 for j in range(4): if i != j: temp += x0[j] * A[i][j] x[i] = (B[i] - temp) / A[i][i] calTemp = max(abs(x - x0)) times += 1 if calTemp < 1e-5: break else: x0 = x.copy() print(times) print(x)
运行结果:
•Gauss-Seidel迭代
import numpy as np A = np.array([[10,-1,2,0],[-1,11,-1,3],[2,-1,10,-1],[0,3,-1,8]]) B = np.array([6, 25, -11, 15]) x0 = np.array([0.0, 0, 0, 0]) x = np.array([1.0, 2, -1, 1]) times = 0 while True: for i in range(4): temp = 0 tempx = x0.copy() for j in range(4): if i != j: temp += x0[j] * A[i][j] x[i] = (B[i] - temp) / A[i][i] x0[i] = x[i].copy() calTemp = max(abs(x - tempx)) times += 1 if calTemp < 1e-5: break else: x0 = x.copy() print(times) print(x)
运行结果:
• SOR迭代法
import numpy as np A = np.array([[10,-1,2,0],[-1,11,-1,3],[2,-1,10,-1],[0,3,-1,8]]) B = np.array([6, 25, -11, 15]) x0 = np.array([0.0, 0, 0, 0]) x = np.array([1.0, 2, -1, 1]) w = 1.2 times, MT = 0, 1000 while times < MT: tempx = x0.copy() for i in range(4): temp = 0 for j in range(4): if i != j: temp += x0[j] * A[i][j] x[i] = (B[i] - temp) / A[i][i] x0[i] = x[i] x = w * x + (1-w) * tempx calTemp = max(abs(x - tempx)) times += 1 if calTemp < 1e-5: break print(times) print(x)
运行结果: