18 个 Python 高效编程技巧+19年最新python学习资料!请签收!

初识Python语言,觉得python满足了我上学时候对编程语言的所有要求。python语言的高效编程技巧让我们这些大学曾经苦逼学了四年c或者c++的人,兴奋的不行不行的,终于解脱了。高级语言,如果做不到这样,还扯啥高级呢?

18 个 Python 高效编程技巧+19年最新python学习资料!请签收!

01 交换变量

>>>a=3

>>>b=6

这个情况如果要交换变量在c++中,肯定需要一个空变量。但是python不需要,只需一行,大家看清楚了

>>>a,b=b,a

>>>print(a)>>>6

>>>ptint(b)>>>5

02 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions)

大多数的Python程序员都知道且使用过列表推导(list comprehensions)。如果你对list comprehensions概念不是很熟悉——一个list comprehension就是一个更简短、简洁的创建一个list的方法。在这里给大家推荐一个python系统学习q群:250933691有免费开发工具以及初学资料,(数据分析,爬虫,AI, 机器学习,神经网络)每天有老师给大家免费授课,欢迎一起交流学习

>>> some_list = [1,2,3,4,5]

>>> another_list = [ x +1for x in some_list ]

>>> another_list

[2,3,4,5,6]

自从python 3.1 起,我们可以用同样的语法来创建集合和字典表:

>>># Set Comprehensions

>>> some_list = [1,2,3,4,5,2,5,1,4,8]

>>> even_set = { xforxinsome_listifx %2==0}

>>> even_set

set([8,2,4])

>>># Dict Comprehensions

>>> d = { x: x %2==0forxinrange(1,11) }

>>> d

{1:False,2:True,3:False,4:True,5:False,6:True,7:False,8:True,9:False,10:True}

在第一个例子里,我们以some_list为基础,创建了一个具有不重复元素的集合,而且集合里只包含偶数。而在字典表的例子里,我们创建了一个key是不重复的1到10之间的整数,value是布尔型,用来指示key是否是偶数。

这里另外一个值得注意的事情是集合的字面量表示法。我们可以简单的用这种方法创建一个集合:

>>> my_set = {1,2,1,2,3,4}

>>> my_set

set([1,2,3,4])

而不需要使用内置函数set()。

03 计数时使用Counter计数对象。

这听起来显而易见,但经常被人忘记。对于大多数程序员来说,数一个东西是一项很常见的任务,而且在大多数情况下并不是很有挑战性的事情——这里有几种方法能更简单的完成这种任务。

Python的collections类库里有个内置的dict类的子类,是专门来干这种事情的:

>>> from collections import Counter

>>> c = Counter('hello world')

>>> c

Counter({'l':3,'o':2,' ':1,'e':1,'d':1,'h':1,'r':1,'w':1})

>>> c.most_common(2)

[('l',3), ('o',2)]

04 漂亮的打印出JSON

JSON是一种非常好的数据序列化的形式,被如今的各种API和web service大量的使用。使用python内置的json处理,可以使JSON串具有一定的可读性,但当遇到大型数据时,它表现成一个很长的、连续的一行时,人的肉眼就很难观看了。

为了能让JSON数据表现的更友好,我们可以使用indent参数来输出漂亮的JSON。当在控制台交互式编程或做日志时,这尤其有用:

>>> import json

>>> print(json.dumps(data))# No indention

{"status":"OK","count":2,"results": [{"age":27,"name":"Oz","lactose_intolerant":true}, {"age":29,"name":"Joe","lactose_intolerant":false}]}

>>> print(json.dumps(data, indent=2))# With indention

{

"status":"OK",

"count":2,

"results": [

{

"age":27,

"name":"Oz",

"lactose_intolerant":true

},

{

"age":29,

"name":"Joe",

"lactose_intolerant":false

}

]

}

同样,使用内置的pprint模块,也可以让其它任何东西打印输出的更漂亮。

05 解决FizzBuzz

前段时间Jeff Atwood 推广了一个简单的编程练习叫FizzBuzz,问题引用如下:

写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz”。

这里就是一个简短的,有意思的方法解决这个问题:

forxinrange(1,101):

print"fizz"[x%3*len('fizz')::]+"buzz"[x%5*len('buzz')::]orx

06 if 语句在行内

print"Hello"ifTrueelse"World"

>>> Hello

07 连接

下面的最后一种方式在绑定两个不同类型的对象时显得很cool。

nfc = ["Packers","49ers"]

afc = ["Ravens","Patriots"]

print nfc + afc

>>> ['Packers','49ers','Ravens','Patriots']

print str(1) +" world"

>>>1world

print`1`+" world"

>>>1world

print1,"world"

>>>1world

print nfc,1

>>> ['Packers','49ers']1

08 数值比较

这是我见过诸多语言中很少有的如此棒的简便法

x =2

if3> x >1:

print x

>>>2

if1< x >0:

print x

>>>2

09 同时迭代两个列表

nfc = ["Packers","49ers"]

afc = ["Ravens","Patriots"]

forteama, teambinzip(nfc, afc):

print teama +" vs. "+ teamb

>>> Packers vs. Ravens

>>>49ers vs. Patriots

10 带索引的列表迭代

teams = ["Packers","49ers","Ravens","Patriots"]

forindex, teaminenumerate(teams):

print index, team

>>>0Packers

>>>149ers

>>>2Ravens

>>>3Patriots

11 列表推导式

已知一个列表,我们可以刷选出偶数列表方法:

numbers = [1,2,3,4,5,6]

even = []

for number in numbers:

if number%2 == 0:

even.append(number)

转变成如下:

numbers= [1,2,3,4,5,6]

even= [number for number in numbers if number%2==0]

12 字典推导

和列表推导类似,字典可以做同样的工作:

teams = ["Packers","49ers","Ravens","Patriots"]

print {key:valueforvalue,keyinenumerate(teams)}

>>>

{'49ers':1,'Ravens':2,'Patriots':3,'Packers':0}

13 初始化列表的值

items = [0]*3

print items

>>> [0,0,0]

14 列表转换为字符串

teams = ["Packers","49ers","Ravens","Patriots"]

print", ".join(teams)

>>>'Packers, 49ers, Ravens, Patriots'

15 从字典中获取元素

我承认try/except代码并不雅致,不过这里有一种简单方法,尝试在字典中找key,如果没有找到对应的alue将用第二个参数设为其变量值。

data = {'user':1,'name':'Max','three':4}

try:

is_admin = data['admin']

exceptKeyError:

is_admin =False

替换成这样

data= {'user':1,'name':'Max','three':4}

is_admin= data.get('admin',False)

16 获取列表的子集

有时,你只需要列表中的部分元素,这里是一些获取列表子集的方法。

x = [1,2,3,4,5,6]

#前3个

print x[:3]

>>> [1,2,3]

#中间4个

print x[1:5]

>>> [2,3,4,5]

#最后3个

print x[3:]

>>> [4,5,6]

#奇数项

print x[::2]

>>> [1,3,5]

#偶数项

print x[1::2]

>>> [2,4,6]

除了python内置的数据类型外,在collection模块同样还包括一些特别的用例,在有些场合Counter非常实用。如果你参加过在这一年的Facebook HackerCup,你甚至也能找到他的实用之处。

fromcollectionsimportCounter

printCounter("hello")

>>> Counter({'l':2,'h':1,'e':1,'o':1})

17 迭代工具

和collections库一样,还有一个库叫itertools,对某些问题真能高效地解决。其中一个用例是查找所有组合,他能告诉你在一个组中元素的所有不能的组合方式

from itertools import combinations

teams = ["Packers","49ers","Ravens","Patriots"]

forgameincombinations(teams,2):

print game

>>> ('Packers','49ers')

>>> ('Packers','Ravens')

>>> ('Packers','Patriots')

>>> ('49ers','Ravens')

>>> ('49ers','Patriots')

>>> ('Ravens','Patriots')

18 False == True

比起实用技术来说这是一个很有趣的事,在python中,True和False是全局变量,因此:

False=True

ifFalse:

print"Hello"

else:

print"World"

>>> Hello

-END-

最后,想学习Python的小伙伴们!

请关注+私信回复:“学习”就可以拿到一份我为大家准备的Python学习资料!

18 个 Python 高效编程技巧+19年最新python学习资料!请签收!

pytyhon学习资料

18 个 Python 高效编程技巧+19年最新python学习资料!请签收!

python学习资料

相关推荐