pandas 之 时间序列索引
import numpy as np import pandas as pd
引入
A basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python string or datetime objects:
from datetime import datetime
dates = [ datetime(2011, 1, 2), datetime(2011, 1, 5), datetime(2011, 1, 7), datetime(2011, 1, 8), datetime(2011, 1, 10), datetime(2011, 1, 12) ] ts = pd.Series(np.random.randn(6), index=dates) ts
2011-01-02 0.825502 2011-01-05 0.453766 2011-01-07 0.077024 2011-01-08 -1.320742 2011-01-10 -1.109912 2011-01-12 -0.469907 dtype: float64
Under the hood, these datetime objects have been put in a DatetimeIndex:
ts.index
DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-07', '2011-01-08', '2011-01-10', '2011-01-12'], dtype='datetime64[ns]', freq=None)
Like other Series, arithmetic operations between differently indexed time series auto-matically align(自动对齐) on the dates:
ts + ts[::2]
2011-01-02 1.651004 2011-01-05 NaN 2011-01-07 0.154049 2011-01-08 NaN 2011-01-10 -2.219823 2011-01-12 NaN dtype: float64
Recall that ts[::2] selects every second element in ts:
pandas stores timestamp using NumPy‘s datetime64 data type the nanosecond resolution:
ts.index.dtype
dtype('<M8[ns]')
Scalar values from a DatetimeIndex are Timestamp object:
stamp = ts.index[0] stamp
Timestamp('2011-01-02 00:00:00')
A Timestamp can be substituted(被替代) anywhere you would use a datetime object. Additionally, it can store frequency information(if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.
(各种转换操作, 对于时间序列)
索引-切片
Time series behaves like any other pandas.Series when you are indexing and selecting data based on label:
stamp = ts.index[2] ts[stamp]
0.0770243257021936
As a convenience, you can also pass a string that is interpretable as a date:
ts['1/10/2011']
-1.109911691867437
ts['20110110']
-1.109911691867437
For longer time series, a year or only a year and month can be passed to easly select slices of data:
longer_ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) longer_ts[:5]
2000-01-01 0.401394 2000-01-02 0.720214 2000-01-03 0.488505 2000-01-04 0.446179 2000-01-05 -2.129299 Freq: D, dtype: float64
longer_ts['2001'][:5]
2001-01-01 0.315472 2001-01-02 0.796386 2001-01-03 0.611503 2001-01-04 0.980799 2001-01-05 0.184401 Freq: D, dtype: float64
Here, the string ‘2001‘ is interpreted as a year and selects that time period. This also works if you speicify the month:
longer_ts['2001-05'][:5]
2001-05-01 0.439009 2001-05-02 -0.304236 2001-05-03 0.603268 2001-05-04 -0.726460 2001-05-05 -0.521669 Freq: D, dtype: float64
"Slicing with detetime objects works as well" ts[datetime(2011, 1, 7):]
'Slicing with detetime objects works as well' 2011-01-07 0.077024 2011-01-08 -1.320742 2011-01-10 -1.109912 2011-01-12 -0.469907 dtype: float64
Because most time series data is ordered chrnologically(按年代顺序的), you can slice with time-stamps not contained in a time series to perform a range query:
ts
2011-01-02 0.825502 2011-01-05 0.453766 2011-01-07 0.077024 2011-01-08 -1.320742 2011-01-10 -1.109912 2011-01-12 -0.469907 dtype: float64
ts['1/6/2011': '1/11/2011']
2011-01-07 0.077024 2011-01-08 -1.320742 2011-01-10 -1.109912 dtype: float64
As before, you can pass either a string date, datetime or timestamp. Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the orginal data.
There is an equivalent instance method,truncate that slices a Series between two dates:
ts.truncate(after='1/9/2011')
2011-01-02 0.825502 2011-01-05 0.453766 2011-01-07 0.077024 2011-01-08 -1.320742 dtype: float64
All of this holds true for DataFrame as well, indexing on its rows:
# periods: 多少个, freq: 间隔 dates = pd.date_range('1/1/2000', periods=100, freq='W-WED') long_df = pd.DataFrame(np.random.randn(100, 4), index=dates, columns=['Colorado', 'Texas', 'New York', 'Ohio']) long_df.loc['5-2001']
Colorado | Texas | New York | Ohio | |
---|---|---|---|---|
2001-05-02 | 0.972317 | 0.407519 | 0.628906 | 1.995901 |
2001-05-09 | 0.299961 | -1.208505 | 1.019247 | 2.244728 |
2001-05-16 | 0.628163 | -0.716498 | 0.621912 | 1.257635 |
2001-05-23 | 0.508852 | 0.753517 | -0.793127 | 0.273496 |
2001-05-30 | -1.443141 | -0.878143 | -0.680227 | 0.455401 |
重复索引
- ts.is_unique
- ts.groupby(level=0)
In some applications, there may be multiple data observations falling on a particular timestamp.Here is an example:
dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/2/2000', '1/3/2000' ]) dup_ts = pd.Series(np.arange(5), index=dates) dup_ts
2000-01-01 0 2000-01-02 1 2000-01-02 2 2000-01-02 3 2000-01-03 4 dtype: int32
We can tell that the index is not unique by checking its is_unique property:
dup_ts.index.is_unique
False
Indexing into this time series will now either produce scalar values or slice depending on whether a timestamp is duplicated:
dup_ts['1/3/2000'] # not duplicated
4
dup_ts['1/2/2000'] # duplicated
2000-01-02 1 2000-01-02 2 2000-01-02 3 dtype: int32
Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is use groupby and pass level=0
grouped = dup_ts.groupby(level=0) # 没有level 会报错, 默认是None
grouped.mean()
2000-01-01 0 2000-01-02 2 2000-01-03 4 dtype: int32
grouped.count()
2000-01-01 1 2000-01-02 3 2000-01-03 1 dtype: int64