Spark集群 + Akka + Kafka + Scala 开发(3) : 开发一个Akka + Spark的应用
前言
在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境。 在Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用中,我们已经写好了一个Spark的应用。 本文的目标是写一个基于akka的scala工程,在一个spark standalone的集群环境中运行。
akka是什么?
akka的作用
akka的名字是action kernel的回文。根据官方定义:akka用于resilient elastic distributed real-time transaction processing。 个人理解是: resilient:是指对需求和安全性等方面(来自于外部的)的一种适应力(弹性)。 elastic:是指对资源利用方面的弹性。 因此,akka是一个满足需求弹性、资源分配弹性的分布式实时事务处理系统。 akka只是一个类库,一个工具,并没有提供一个平台。
akka的运行模式和用例
- akka有两种运行模式:
- As a library: 一个使用于web应用,把akka作为一个普通的jar包放到classpath或者WEB-INF/lib。
- As an application: 也称为micro system。
- akka的用例 akka的用例很多,可以参照Examples of use-cases for Akka.
本文中的用例
在本文中,一个Spark + akka的环境里,akka被用于as an application
模式下。 我们会创建一个akka工程,含有两个应用:
- akka host application 建立一个actor system, 定义了所有的任务(actors)。等待客户端的请求。 部分actor使用了spark的云计算功能。 这是一个spark的应用。
- akka client application 调用host application上特定的actor。
我们看出,这里我们把akka作为一个任务处理器,并通过spark来完成任务。
项目结构和文件说明
说明
这个工程包含了两个应用。 一个Consumer应用:CusomerApp:实现了通过Spark的Stream+Kafka的技术来实现处理消息的功能。 一个Producer应用:ProducerApp:实现了向Kafka集群发消息的功能。
文件结构
AkkaSampleApp # 项目目录 |-- build.bat # build文件 |-- src |-- main |-- resources |-- application.conf # Akka Server应用的配置文件 |-- client.conf # Akka Client应用的配置文件 |-- scala |-- ClientActor.scala # Akka Client的Actor:提供了一种调用Server Actor的方式。 |-- ClientApp.scala # Akka Client应用 |-- ProductionReaper.scala # Akka Shutdown pattern的实现者 |-- Reaper.scala # Akka Shutdown pattern的Reaper抽象类 |-- ServerActor.scala # Akka Server的Actor,提供一个求1到n的MapReduce计算。使用了Spark。 |-- ServerApp.scala # Akka Server应用
构建工程目录
可以运行:
mkdir AkkaSampleApp mkdir -p /AkkaSampleApp/src/main/resources mkdir -p /AkkaSampleApp/src/main/scala
代码
build.sbt
name := "akka-sample-app" version := "1.0" scalaVersion := "2.11.8" scalacOptions += "-feature" scalacOptions += "-deprecation" scalacOptions += "-language:postfixOps" libraryDependencies ++= Seq( "com.typesafe.akka" %% "akka-actor" % "2.4.10", "com.typesafe.akka" %% "akka-remote" % "2.4.10", "org.apache.spark" %% "spark-core" % "2.0.0" ) resolvers += "Akka Snapshots" at "http://repo.akka.io/snapshots/"
application.conf
akka { #loglevel = "DEBUG" actor { provider = "akka.remote.RemoteActorRefProvider" } remote { enabled-transports = ["akka.remote.netty.tcp"] netty.tcp { hostname = "127.0.0.1" port = 2552 } #log-sent-messages = on #log-received-messages = on } }
cient.conf
akka { #loglevel = "DEBUG" actor { provider = "akka.remote.RemoteActorRefProvider" } remote { enabled-transports = ["akka.remote.netty.tcp"] netty.tcp { hostname = "127.0.0.1" port = 0 } #log-sent-messages = on #log-received-messages = on } }
[blockquote]
注:port = 0
表示这个端口号会自动生成一个。
[/blockquote]
ClientActor.scala
import akka.actor._ import akka.event.Logging class ClientActor(serverPath: String) extends Actor { val log = Logging(context.system, this) val serverActor = context.actorSelection(serverPath) def receive = { case msg: String => log.info(s"ClientActor received message '$msg'") serverActor ! 10000L } }
ClientApp.scala
import com.typesafe.config.ConfigFactory import akka.actor._ import akka.remote.RemoteScope import akka.util._ import java.util.concurrent.TimeUnit import scala.concurrent._ import scala.concurrent.duration._ object ClientApp { def main(args: Array[String]): Unit = { val system = ActorSystem("LocalSystem", ConfigFactory.load("client")) // get the remote actor via the server actor system's address val serverAddress = AddressFromURIString("akka.tcp://[email protected]:2552") val actor = system.actorOf(Props[ServerActor].withDeploy(Deploy(scope = RemoteScope(serverAddress)))) // invoke the remote actor via a client actor. // val remotePath = "akka.tcp://[email protected]:2552/user/serverActor" // val actor = system.actorOf(Props(classOf[ClientActor], remotePath), "clientActor") buildReaper(system, actor) // tell actor ! 10000L waitShutdown(system, actor) } private def buildReaper(system: ActorSystem, actor: ActorRef): Unit = { import Reaper._ val reaper = system.actorOf(Props(classOf[ProductionReaper])) // Watch the action reaper ! WatchMe(actor) } private def waitShutdown(system: ActorSystem, actor: ActorRef): Unit = { // trigger the shutdown operation in ProductionReaper system.stop(actor) // wait to shutdown Await.result(system.whenTerminated, 60.seconds) } }
ProductionReaper.scala
当所有的Actor停止后,终止Actor System。
class ProductionReaper extends Reaper { // Shutdown def allSoulsReaped(): Unit = { context.system.terminate() } }
Reaper.scala
import akka.actor.{Actor, ActorRef, Terminated} import scala.collection.mutable.ArrayBuffer object Reaper { // Used by others to register an Actor for watching case class WatchMe(ref: ActorRef) } abstract class Reaper extends Actor { import Reaper._ // Keep track of what we're watching val watched = ArrayBuffer.empty[ActorRef] // Derivations need to implement this method. It's the // hook that's called when everything's dead def allSoulsReaped(): Unit // Watch and check for termination final def receive = { case WatchMe(ref) => context.watch(ref) watched += ref case Terminated(ref) => watched -= ref if (watched.isEmpty) allSoulsReaped() } }
ServerActor.scala
提供一个求1到n平方和的MapReduce计算。
import akka.actor.Actor import akka.actor.Props import akka.event.Logging import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.SparkConf class ServerActor extends Actor { val log = Logging(context.system, this) def receive = { case n: Long => squareSum(n) } private def squareSum(n: Long): Long = { val conf = new SparkConf().setAppName("Simple Application") val sc = new SparkContext(conf) val squareSum = sc.parallelize(1L until n).map { i => i * i }.reduce(_ + _) log.info(s"============== The square sum of $n is $squareSum. ==============") squareSum } }
ServerApp.scala
import scala.concurrent.duration._ import com.typesafe.config.ConfigFactory import akka.actor.ActorSystem import akka.actor.Props object ServerApp { def main(args: Array[String]): Unit = { val system = ActorSystem("ServerActorSystem") val actor = system.actorOf(Props[ServerActor], name = "serverActor") } }
构建工程
进入目录AkkaSampleApp。运行:
sbt package
第一次运行时间会比较长。
测试应用
启动Spark服务
- 启动spark集群master server
$SPARK_HOME/sbin/start-master.sh
[blockquote]
master服务,默认会使用7077
这个端口。可以通过其日志文件查看实际的端口号。
[/blockquote]
- 启动spark集群slave server
$SPARK_HOME/sbin/start-slave.sh spark://$(hostname):7077
启动Akka Server应用
运行:
$SPARK_HOME/bin/spark-submit --master spark://$(hostname):7077 --class ServerApp target/scala-2.11/akka-sample-app_2.11-1.0.jar
[blockquote]
如果出现java.lang.NoClassDefFoundError错误, 请参照Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境, 确保akka的包在Spark中设置好了。 注:可以使用Ctrl+C来中断这个Server应用。
[/blockquote]
启动Akka Client应用
新启动一个终端,运行:
java -classpath ./target/scala-2.11/akka-sample-app_2.11-1.0.jar:$AKKA_HOME/lib/akka/*:$SCALA_HOME/lib/* ClientApp # or # $SPARK_HOME/bin/spark-submit --master spark://$(hostname):7077 --class ClientApp target/scala-2.11/akka-sample-app_2.11-1.0.jar
然后:看看Server应用是否开始处理了。
总结
Server应用需要Spark的技术,因此,是在Spark环境中运行。 Clinet应用,可以是一个普通的Java应用。
下面请看
至此,我们已经写好了一个spark集群+akka+scala的应用。下一步请看: Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用
参照
- akka document
- Elasticity (cloud computing)
- Resilient control systems
- akka 2.4.10 code samples
- akka office samples
- A simple Akka (actors) remote example
- Shutdown Patterns in AKKA 2