递归算法转换为非递归算法

递归算法实际上是一种分而治之的方法,它把复杂问题分解为简单问题来求解。对于某些复杂问题(例如hanio塔问题),递归算法是一种自然且合乎逻辑的解决问题的方式,但是递归算法的执行效率通常比较差。因此,在求解某些问题时,常采用递归算法来分析问题,用非递归算法来求解问题;另外,有些程序设计语言不支持递归,这就需要把递归算法转换为非递归算法。

将递归算法转换为非递归算法有两种方法,一种是直接求值(迭代/循环),不需要回溯;另一种是不能直接求值,需要回溯。前者使用一些变量保存中间结果,称为直接转换法;后者使用栈保存中间结果,称为间接转换法,下面分别讨论这两种方法。

{
   if(n == 0) return 1;
   else
 
    {
    int val = factorial(n - 1);
    return n * val;
   }
}
 
转化为尾递归求解:
 
int factorial(int acc, int x)
 
 { //acc传的值为1。
  if(x <= 1) return acc;
  else

    return factorial(x * acc, x - 1);
}
 
  尾递归的重要性在于当进行尾递归调用时,调用者的返回位置不需要被存在调用栈里。当递归调用返回时,它直接分支到先前已保存的返回地址。因此,在支持尾递归优化的编译器上,尾递归在时间和空间上都比较划算。迭代算法需要一个临时变量,这无疑导致了程序的可读性降低,迭代函数不像递归函数那样需要考虑函数调用的支出,而且对一个线程来说可用的栈空间通常比可用的堆空间要少得多,而递归算法则相对迭代算法需要更多的栈空间!
 
2. 间接转换法
  该方法使用栈保存中间结果,一般需根据递归函数在执行过程中栈的变化得到。其一般过程如下:

将初始状态s0进栈
  while (栈不为空)
  {
  退栈,将栈顶元素赋给s;
  if (s是要找的结果) 返回;
  else {
  寻找到s的相关状态s1;
  将s1进栈
  }
  }
 
间接转换法在数据结构中有较多实例,如二叉树遍历算法的非递归实现、图的深度优先遍历算法的非递归实现等等,请读者参考主教材中相关内容。

相关推荐