深度学习,如何用去噪自编码器预测原始数据?
去噪自编码器(denoising autoencoder, DAE)是一类接受损坏数据作为输入,并训练来预测原始未被损坏数据作为输出的自编码器。
去噪自编码器代价函数的计算图。去噪自编码器被训练为从损坏的版本~x 重构干净数据点x。这可以通过最小化损失L = -log pdecoder(x|h = f(~x)) 实现,其中~x 是样本x 经过损坏过程C(~x| x) 后得到的损坏版本。
得分匹配是最大似然的代替。它提供了概率分布的一致估计,促使模型在各个数据点x 上获得与数据分布相同的得分(score)。
对一类采用高斯噪声和均方误差作为重构误差的特定去噪自编码器(具有sig-moid 隐藏单元和线性重构单元)的去噪训练过程,与训练一类特定的被称为RBM 的无向概率模型是等价的。
将训练样本x 表示为位于低维流形(粗黑线)附近的红叉。我们用灰色圆圈表示等概率的损坏过程C(~x|x)。灰色箭头演示了如何将一个训练样本转换为经过此损坏过程的样本。
相关推荐
深圳克林斯曼 2020-11-09
86377811 2020-11-06
Niteowl 2020-11-05
ohbxiaoxin 2020-11-04
bigquant 2020-11-03
PandaJiong 2020-11-02
fengzhimohan 2020-11-02
lizhengjava 2020-11-13
luyong0 2020-11-08
gyunwh 2020-11-02
EchoYY 2020-10-31
dingyahui 2020-10-30
clong 2020-11-13
Micusd 2020-11-19
人工智能 2020-11-19
81510295 2020-11-17
jaybeat 2020-11-17
flyfor0 2020-11-16
lgblove 2020-11-16