使用 TensorFlow Serving 和 Docker 快速部署机器学习服务
从实验到生产,简单快速部署机器学习模型一直是一个挑战。这个过程要做的就是将训练好的模型对外提供预测服务。在生产中,这个过程需要可重现,隔离和安全。这里,我们使用基于Docker的TensorFlow Serving来简单地完成这个过程。TensorFlow 从1.8版本开始支持Docker部署,包括CPU和GPU,非常方便。
获得训练好的模型
获取模型的第一步当然是训练一个模型,但是这不是本篇的重点,所以我们使用一个已经训练好的模型,比如ResNet。TensorFlow Serving 使用SavedModel这种格式来保存其模型,SavedModel是一种独立于语言的,可恢复,密集的序列化格式,支持使用更高级别的系统和工具来生成,使用和转换TensorFlow模型。这里我们直接下载一个预训练好的模型:
$ mkdir /tmp/resnet $ curl -s https://storage.googleapis.com/download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC_jpg.tar.gz | tar --strip-components=2 -C /tmp/resnet -xvz
如果是使用其他框架比如Keras生成的模型,则需要将模型转换为SavedModel格式,比如:
from keras.models import Sequential from keras import backend as K import tensorflow as tf model = Sequential() # 中间省略模型构建 # 模型转换为SavedModel signature = tf.saved_model.signature_def_utils.predict_signature_def( inputs={'input_param': model.input}, outputs={'type': model.output}) builder = tf.saved_model.builder.SavedModelBuilder('/tmp/output_model_path/1/') builder.add_meta_graph_and_variables( sess=K.get_session(), tags=[tf.saved_model.tag_constants.SERVING], signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }) builder.save()
下载完成后,文件目录树为:
$ tree /tmp/resnet /tmp/resnet └── 1538687457 ├── saved_model.pb └── variables ├── variables.data-00000-of-00001 └── variables.index
部署模型
使用Docker部署模型服务:
$ docker pull tensorflow/serving $ docker run -p 8500:8500 -p 8501:8501 --name tfserving_resnet \ --mount type=bind,source=/tmp/resnet,target=/models/resnet \ -e MODEL_NAME=resnet -t tensorflow/serving
其中,8500
端口对于TensorFlow Serving提供的gRPC端口,8501
为REST API服务端口。-e MODEL_NAME=resnet
指出TensorFlow Serving需要加载的模型名称,这里为resnet
。上述命令输出为
2019-03-04 02:52:26.610387: I tensorflow_serving/model_servers/server.cc:82] Building single TensorFlow model file config: model_name: resnet model_base_path: /models/resnet 2019-03-04 02:52:26.618200: I tensorflow_serving/model_servers/server_core.cc:461] Adding/updating models. 2019-03-04 02:52:26.618628: I tensorflow_serving/model_servers/server_core.cc:558] (Re-)adding model: resnet 2019-03-04 02:52:26.745813: I tensorflow_serving/core/basic_manager.cc:739] Successfully reserved resources to load servable {name: resnet version: 1538687457} 2019-03-04 02:52:26.745901: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: resnet version: 1538687457} 2019-03-04 02:52:26.745935: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: resnet version: 1538687457} 2019-03-04 02:52:26.747590: I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:363] Attempting to load native SavedModelBundle in bundle-shim from: /models/resnet/1538687457 2019-03-04 02:52:26.747705: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:31] Reading SavedModel from: /models/resnet/1538687457 2019-03-04 02:52:26.795363: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:54] Reading meta graph with tags { serve } 2019-03-04 02:52:26.828614: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2019-03-04 02:52:26.923902: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:162] Restoring SavedModel bundle. 2019-03-04 02:52:28.098479: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:138] Running MainOp with key saved_model_main_op on SavedModel bundle. 2019-03-04 02:52:28.144510: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:259] SavedModel load for tags { serve }; Status: success. Took 1396689 microseconds. 2019-03-04 02:52:28.146646: I tensorflow_serving/servables/tensorflow/saved_model_warmup.cc:83] No warmup data file found at /models/resnet/1538687457/assets.extra/tf_serving_warmup_requests 2019-03-04 02:52:28.168063: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: resnet version: 1538687457} 2019-03-04 02:52:28.174902: I tensorflow_serving/model_servers/server.cc:286] Running gRPC ModelServer at 0.0.0.0:8500 ... [warn] getaddrinfo: address family for nodename not supported 2019-03-04 02:52:28.186724: I tensorflow_serving/model_servers/server.cc:302] Exporting HTTP/REST API at:localhost:8501 ... [evhttp_server.cc : 237] RAW: Entering the event loop ...
我们可以看到,TensorFlow Serving使用1538687457
作为模型的版本号。我们使用curl命令来查看一下启动的服务状态,也可以看到提供服务的模型版本以及模型状态。
$ curl http://localhost:8501/v1/models/resnet { "model_version_status": [ { "version": "1538687457", "state": "AVAILABLE", "status": { "error_code": "OK", "error_message": "" } } ] }
查看模型输入输出
很多时候我们需要查看模型的输出和输出参数的具体形式,TensorFlow提供了一个saved_model_cli
命令来查看模型的输入和输出参数:
$ saved_model_cli show --dir /tmp/resnet/1538687457/ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['predict']: The given SavedModel SignatureDef contains the following input(s): inputs['image_bytes'] tensor_info: dtype: DT_STRING shape: (-1) name: input_tensor:0 The given SavedModel SignatureDef contains the following output(s): outputs['classes'] tensor_info: dtype: DT_INT64 shape: (-1) name: ArgMax:0 outputs['probabilities'] tensor_info: dtype: DT_FLOAT shape: (-1, 1001) name: softmax_tensor:0 Method name is: tensorflow/serving/predict signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['image_bytes'] tensor_info: dtype: DT_STRING shape: (-1) name: input_tensor:0 The given SavedModel SignatureDef contains the following output(s): outputs['classes'] tensor_info: dtype: DT_INT64 shape: (-1) name: ArgMax:0 outputs['probabilities'] tensor_info: dtype: DT_FLOAT shape: (-1, 1001) name: softmax_tensor:0 Method name is: tensorflow/serving/predict
注意到signature_def
,inputs
的名称,类型和输出,这些参数在接下来的模型预测请求中需要。
使用模型接口预测:REST和gRPC
TensorFlow Serving提供REST API和gRPC两种请求方式,接下来将具体这两种方式。
REST
我们下载一个客户端脚本,这个脚本会下载一张猫的图片,同时使用这张图片来计算服务请求时间。
$ curl -o /tmp/resnet/resnet_client.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py
以下脚本使用requests
库来请求接口,使用图片的base64编码字符串作为请求内容,返回图片分类,并计算了平均处理时间。
from __future__ import print_function import base64 import requests # The server URL specifies the endpoint of your server running the ResNet # model with the name "resnet" and using the predict interface. SERVER_URL = 'http://localhost:8501/v1/models/resnet:predict' # The image URL is the location of the image we should send to the server IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg' def main(): # Download the image dl_request = requests.get(IMAGE_URL, stream=True) dl_request.raise_for_status() # Compose a JSON Predict request (send JPEG image in base64). jpeg_bytes = base64.b64encode(dl_request.content).decode('utf-8') predict_request = '{"instances" : [{"b64": "%s"}]}' % jpeg_bytes # Send few requests to warm-up the model. for _ in range(3): response = requests.post(SERVER_URL, data=predict_request) response.raise_for_status() # Send few actual requests and report average latency. total_time = 0 num_requests = 10 for _ in range(num_requests): response = requests.post(SERVER_URL, data=predict_request) response.raise_for_status() total_time += response.elapsed.total_seconds() prediction = response.json()['predictions'][0] print('Prediction class: {}, avg latency: {} ms'.format( prediction['classes'], (total_time*1000)/num_requests)) if __name__ == '__main__': main()
输出结果为
$ python resnet_client.py Prediction class: 286, avg latency: 210.12310000000002 ms
gRPC
让我们下载另一个客户端脚本,这个脚本使用gRPC作为服务,传入图片并获取输出结果。这个脚本需要安装tensorflow-serving-api
这个库。
$ curl -o /tmp/resnet/resnet_client_grpc.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client_grpc.py $ pip install tensorflow-serving-api
脚本内容:
from __future__ import print_function # This is a placeholder for a Google-internal import. import grpc import requests import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc # The image URL is the location of the image we should send to the server IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg' tf.app.flags.DEFINE_string('server', 'localhost:8500', 'PredictionService host:port') tf.app.flags.DEFINE_string('image', '', 'path to image in JPEG format') FLAGS = tf.app.flags.FLAGS def main(_): if FLAGS.image: with open(FLAGS.image, 'rb') as f: data = f.read() else: # Download the image since we weren't given one dl_request = requests.get(IMAGE_URL, stream=True) dl_request.raise_for_status() data = dl_request.content channel = grpc.insecure_channel(FLAGS.server) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) # Send request # See prediction_service.proto for gRPC request/response details. request = predict_pb2.PredictRequest() request.model_spec.name = 'resnet' request.model_spec.signature_name = 'serving_default' request.inputs['image_bytes'].CopyFrom( tf.contrib.util.make_tensor_proto(data, shape=[1])) result = stub.Predict(request, 10.0) # 10 secs timeout print(result) if __name__ == '__main__': tf.app.run()
输出的结果可以看到图片的分类,概率和使用的模型信息:
$ python resnet_client_grpc.py outputs { key: "classes" value { dtype: DT_INT64 tensor_shape { dim { size: 1 } } int64_val: 286 } } outputs { key: "probabilities" value { dtype: DT_FLOAT tensor_shape { dim { size: 1 } dim { size: 1001 } } float_val: 2.4162832232832443e-06 float_val: 1.9012182974620373e-06 float_val: 2.7247710022493266e-05 float_val: 4.426385658007348e-07 ...(中间省略) float_val: 1.4636580090154894e-05 float_val: 5.812107133351674e-07 float_val: 6.599806511076167e-05 float_val: 0.0012952701654285192 } } model_spec { name: "resnet" version { value: 1538687457 } signature_name: "serving_default" }
性能
通过编译优化的TensorFlow Serving二进制来提高性能
TensorFlows serving有时会有输出如下的日志:
Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
TensorFlow Serving已发布Docker镜像旨在尽可能多地使用CPU架构,因此省略了一些优化以最大限度地提高兼容性。如果你没有看到此消息,则你的二进制文件可能已针对你的CPU进行了优化。根据你的模型执行的操作,这些优化可能会对你的服务性能产生重大影响。幸运的是,编译优化的TensorFlow Serving二进制非常简单。官方已经提供了自动化脚本,分以下两部进行:
# 1. 编译开发版本 $ docker build -t $USER/tensorflow-serving-devel -f Dockerfile.devel https://github.com/tensorflow/serving.git#:tensorflow_serving/tools/docker # 2. 生产新的镜像 $ docker build -t $USER/tensorflow-serving --build-arg TF_SERVING_BUILD_IMAGE=$USER/tensorflow-serving-devel https://github.com/tensorflow/serving.git#:tensorflow_serving/tools/docker
之后,使用新编译的$USER/tensorflow-serving
重新启动服务即可。
总结
上面我们快速实践了使用TensorFlow Serving和Docker部署机器学习服务的过程,可以看到,TensorFlow Serving提供了非常方便和高效的模型管理,配合Docker,可以快速搭建起机器学习服务。
参考
- Serving ML Quickly with TensorFlow Serving and Docker
- Train and serve a TensorFlow model with TensorFlow Serving
Follow me: @qiwihui
Site: QIWIHUI