11.分类与监督学习,朴素贝叶斯分类算法
1.理解分类与监督学习、聚类与无监督学习。
简述分类与聚类的联系与区别。
联系:分类和聚类都是把每一条记录归应到对应的类别,对于想用分析的目标点,都会在数据集寻找离它最近的点,二个都用到了NN算法,结果是一样的。
区别:对于分类来说,在对数据集分类时,我们是知道这个数据集是有多少种类的,比如对一个学校的在校大学生进行性别分类,我们会下意识很清楚知道分为“男”,“女”,也是一种监督学习,一般用KNN算法。
而对于聚类来说,在对数据集操作时,我们是不知道该数据集包含多少类,我们要做的,是将数据集中相似的数据归纳在一起。比如预测某一学校的在校大学生的好朋友团体,我们不知道大学生和谁玩的好玩的不好,我们通过他们的相似度进行聚类,聚成n个团体,这就是聚类,一般用K-Means算法。
简述什么是监督学习与无监督学习。
监督学习:通过已有的训练样本去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。
无监督学习:在于我们事先没有任何训练样本,而需要直接对数据进行建模。
2.朴素贝叶斯分类算法 实例
利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。
有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数
目标分类变量疾病:
–心梗
–不稳定性心绞痛
新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)
最可能是哪个疾病?
上传手工演算过程。
性别 | 年龄 | KILLP | 饮酒 | 吸烟 | 住院天数 | 疾病 | |
1 | 男 | >80 | 1 | 是 | 是 | 7-14 | 心梗 |
2 | 女 | 70-80 | 2 | 否 | 是 | <7 | 心梗 |
3 | 女 | 70-81 | 1 | 否 | 否 | <7 | 不稳定性心绞痛 |
4 | 女 | <70 | 1 | 否 | 是 | >14 | 心梗 |
5 | 男 | 70-80 | 2 | 是 | 是 | 7-14 | 心梗 |
6 | 女 | >80 | 2 | 否 | 否 | 7-14 | 心梗 |
7 | 男 | 70-80 | 1 | 否 | 否 | 7-14 | 心梗 |
8 | 女 | 70-80 | 2 | 否 | 否 | 7-14 | 心梗 |
9 | 女 | 70-80 | 1 | 否 | 否 | <7 | 心梗 |
10 | 男 | <70 | 1 | 否 | 否 | 7-14 | 心梗 |
11 | 女 | >80 | 3 | 否 | 是 | <7 | 心梗 |
12 | 女 | 70-80 | 1 | 否 | 是 | 7-14 | 心梗 |
13 | 女 | >80 | 3 | 否 | 是 | 7-14 | 不稳定性心绞痛 |
14 | 男 | 70-80 | 3 | 是 | 是 | >14 | 不稳定性心绞痛 |
15 | 女 | <70 | 3 | 否 | 否 | <7 | 心梗 |
16 | 男 | 70-80 | 1 | 否 | 否 | >14 | 心梗 |
17 | 男 | <70 | 1 | 是 | 是 | 7-14 | 心梗 |
18 | 女 | 70-80 | 1 | 否 | 否 | >14 | 心梗 |
19 | 男 | 70-80 | 2 | 否 | 否 | 7-14 | 心梗 |
20 | 女 | <70 | 3 | 否 | 否 | <7 | 不稳定性心绞痛 |
解:设x(x1~x6)为人的特征,y(y1:心梗,y2:不稳定性心绞痛)
性别为男的个数为8
年龄<7的个数为5
KILLP=‘I‘个数为9
饮酒=‘是’个数为4
吸烟=‘是”个数为10
住院天数<7个数为6
概率p(心脏病)=8/20+5/20+9/20+4/20+10/20+6/20=2/5+1/4+9/20+1/5+1/2+3/10=0.00135
患有心梗疾病的个数为16,概率P(心梗)=16/20=4/5
在心梗的前提下是男性的个数为:7,概率P(男|心梗)=7/16
在心梗的前提下是年龄<70的个数为:4,概率P(年龄<70|心梗)=4/16=1/4
在心梗的前提下是KILLP=’1’的个数为:9,概率P(KILLP=’1’|心梗)=9/16
在心梗的前提下是饮酒=‘是’的个数为:3,概率P(饮酒=‘是’|心梗)=3/16
在心梗的前提下是吸烟=‘是’的个数为:7,概率P(吸烟=‘是’|心梗)=7/16
在心梗的前提下是住院天数<7的个数为:4,概率P(住院天数<7|心梗)=4/16=1/4
p(心梗|心脏病)=(4/5+7/16+1/4+9/16+3/16+7/16+1/4)/ 0.00135 =74.3%