asp.net core常见的4种数据加密算法

0. 前言

这一篇我们将介绍一下.net core 的加密和解密。在Web应用程序中,用户的密码会使用MD5值作为密码数据存储起来。而在其他的情况下,也会使用加密和解密的功能。

常见的加密算法分为对称加密和非对称加密。所谓的对称加密是指加密密钥和解密密钥是同一个,非对称加密是值加密密钥和解密迷药不同。而我们常应用在保存用户登录密码这个过程中的MD5本质上并不是加密算法,而是一种信息摘要算法。不过MD5尽量保证了每个字符串最后计算出来的值都不一样,所以在密码保存中常用MD5做为保密值。

1. 常见对称加密算法

对称加密算法,简单的说就是加密和解密使用相同的密钥进行运算。对于大多数加密算法,解密和加密是一个互逆的运算。对称加密算法的安全性取决于密钥的长度,密钥越长越安全。当然,不建议使用过长的密钥。

那么,我们来看看常见的对称加密算法有哪些吧,以及C#该如何实现。

1.1 DES 和 DESede 算法

DES算法和DESede算法(又称三重DES算法) 统称DES系列算法。DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法。而DESede就是针对同一块数据做三次DES加密。这里就不对原理做过多的介绍了,来看看.net core里如何实现DES加/解密吧。

在Utils项目里,创建目录Security

在Security目录下,创建DESHelper类:

namespace Utils.Security
{
  public class DesHelper
  {
    
  }
}

加密解密实现:

using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;

namespace Utils.Security
{
  public static class DesHelper
  {
    static DesHelper()
    {
      DesHandler = DES.Create("DES");
      DesHandler.Key = Convert.FromBase64String("L1yzjGB2sI4=");
      DesHandler.IV = Convert.FromBase64String("uEcGI4JSAuY=");
    }

    private static DES DesHandler { get; }

    /// <summary>
    /// 加密字符
    /// </summary>
    /// <param name="source"></param>
    /// <returns></returns>
    public static string Encrypt(string source)
    {
      try
      {
        using (var memStream = new MemoryStream())
        using (var cryptStream = new CryptoStream(memStream, DesHandler.CreateEncryptor(DesHandler.Key, DesHandler.IV),
          CryptoStreamMode.Write))
        {
          var bytes = Encoding.UTF8.GetBytes(source);
          cryptStream.Write(bytes, 0, bytes.Length);
          cryptStream.FlushFinalBlock();
          
          return Convert.ToBase64String(memStream.ToArray());
        }
      }
      catch (Exception e)
      {
        Console.WriteLine(e);
        return null;
      }
    }

    /// <summary>
    /// 解密
    /// </summary>
    /// <param name="source"></param>
    /// <returns></returns>
    public static string Decrypt(string source)
    {
      try
      {
        using (var mStream = new MemoryStream(Convert.FromBase64String(source)))
        using (var cryptoStream =
          new CryptoStream(mStream, DesHandler.CreateDecryptor(DesHandler.Key, DesHandler.IV), CryptoStreamMode.Read))
        using (var reader = new StreamReader(cryptoStream))
        {
          return reader.ReadToEnd();
        }
      }
      catch (Exception e)
      {
        Console.WriteLine(e);
        return null;
      }
    }
  }
}

每次调用DesHandler = DES.Create("DES"); 都会重新获得一个DES算法实现实例,这样每次获取的实例中Key、IV这两个属性的值也会发生变化。如果直接使用会出现这次加密的数据下次就没法解密了,为了减少这种情况,所以代码处手动赋值了Key、IV这两个属性。

1.2 AES 加密算法

AES算法(Advanced Encryption Standard)也就是高级数据加密标准算法,是为了解决DES算法中的存在的漏洞而提出的算法标准。现行的AES算法核心是Rijndael算法。当然了,这个不用太过于关心。我们直接看看是如何实现吧:

同样,在Security目录创建一个AesHelper类:

namespace Utils.Security
{
  public static class AesHelper
  {
    
  }
}

具体的加解密实现:

using System;
using System.IO;
using System.Security.Cryptography;

namespace Utils.Security
{
  public static class AesHelper
  {
    static AesHelper()
    {
      AesHandler = Aes.Create();
      AesHandler.Key = Convert.FromBase64String("lB2BxrJdI4UUjK3KEZyQ0obuSgavB1SYJuAFq9oVw0Y=");
      AesHandler.IV = Convert.FromBase64String("6lra6ceX26Fazwj1R4PCOg==");
    }

    private static Aes AesHandler { get; }

    public static string Encrypt(string source)
    {
      using (var mem = new MemoryStream())
      using (var stream = new CryptoStream(mem, AesHandler.CreateEncryptor(AesHandler.Key, AesHandler.IV),
        CryptoStreamMode.Write))
      {
        using (var writer = new StreamWriter(stream))
        {
          writer.Write(source);
        }  
        return Convert.ToBase64String(mem.ToArray());
      }
      
    }

    public static string Decrypt(string source)
    {
      var data = Convert.FromBase64String(source);
      using (var mem = new MemoryStream(data))
      using (var crypto = new CryptoStream(mem, AesHandler.CreateDecryptor(AesHandler.Key, AesHandler.IV),
        CryptoStreamMode.Read))
      using (var reader = new StreamReader(crypto))
      {
        return reader.ReadToEnd();
      }
    }
  }
}

2. 常见非对称加密算法

非对称加密算法,指的是加密密钥和解密密钥并不相同。非对称加密算法的秘钥通常成对出现,分为公开密钥和私有密钥。公开密钥可以以公开的形式发给数据交互方,而不会产生泄密的风险。因为非对称加密算法,无法通过公开密钥推算私有密钥,反之亦然。

通常,非对称加密算法是用公钥进行加密,使用私钥进行解密。

2.1 RSA算法

RSA算法是标准的非对称加密算法,名字来源是三位发明者的姓氏首字母。RSA公开密钥密码体制是一种使用不同的加密密钥与解密密钥,“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制 。其安全性取决于密钥的长度,1024位的密钥几乎不可能被破解。

同样,在Utils.Security下创建RSAHelper类:

namespace Utils.Security
{
  public static class RsaHelper
  {
    
  }
}

具体实现:

using System;
using System.Security.Cryptography;

namespace Utils.Security
{
  public static class RsaHelper
  {
    public static RSAParameters PublicKey { get; private set; }
    public static RSAParameters PrivateKey { get; private set; }

    static RsaHelper()
    {
      
    }

    public static void InitWindows()
    {
      var parameters = new CspParameters()
      {
        KeyContainerName = "RSAHELPER" // 默认的RSA保存密钥的容器名称
      };
      var handle = new RSACryptoServiceProvider(parameters);
      PublicKey = handle.ExportParameters(false);
      PrivateKey = handle.ExportParameters(true);
    }

    public static void ExportKeyPair(string publicKeyXmlString, string privateKeyXmlString)
    {
      var handle = new RSACryptoServiceProvider();
      handle.FromXmlString(privateKeyXmlString);
      PrivateKey = handle.ExportParameters(true);
      handle.FromXmlString(publicKeyXmlString);
      PublicKey = handle.ExportParameters(false);
    }
    public static byte[] Encrypt(byte[] dataToEncrypt)
    {
      try
      {
        byte[] encryptedData;
        using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())
        {
          RSA.ImportParameters(PublicKey);
          encryptedData = RSA.Encrypt(dataToEncrypt, true);
        }

        return encryptedData;
      }
      catch (CryptographicException e)
      {
        Console.WriteLine(e.Message);
        return null;
      }
    }

    public static byte[] Decrypt(byte[] dataToDecrypt)
    {
      try
      {
        byte[] decryptedData;
        using (var rsa = new RSACryptoServiceProvider())
        {
          rsa.ImportParameters(PrivateKey);
          decryptedData = rsa.Decrypt(dataToDecrypt, true);
        }
        return decryptedData;
      }
      catch (CryptographicException e)
      {
        Console.WriteLine(e.ToString());
        return null;
      }
    }
  }
}

因为RSA的特殊性,需要预先设置好公钥和私钥。C# 支持多种方式导入密钥,这里就不做过多介绍了。

3. 信息摘要算法

这种算法严格意义上并不是加密算法,因为它完全不可逆。也就是说,一旦进行使用该类型算法加密后,无法解密还原出数据。当然了,也正是因为这种特性常常被用来做密码的保存。因为这样可以避免某些人拿到数据库与代码后,可以简单反推出用户的密码。

3.1 MD5算法

最常用的信息摘要算法就是MD5 加密算法,MD5信息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。

原理不解释,我们看下如何实现,照例现在Security下创建MD5Helper:

namespace Utils.Security
{
  public static class Md5Helper
  {
    
  }
}

具体实现:

using System.Security.Cryptography;
using System.Text;

namespace Utils.Security
{
  public static class Md5Helper
  {
    private static MD5 Hanlder { get; } = new MD5CryptoServiceProvider();

    public static string GetMd5Str(string source)
    {
      var data = Encoding.UTF8.GetBytes(source);
      var security = Hanlder.ComputeHash(data);
      var sb = new StringBuilder();
      foreach (var b in security)
      {
        sb.Append(b.ToString("X2"));
      }

      return sb.ToString();
    }
  }
}

4 总结

这一篇简单介绍了四种常用的加密算法的实现,当然最常用的就是 MD5,因为这个是大多数系统用来做密码保存的加密算法。