美团技术面试官:你知道Spring Cloud限流方案?

文章来源:公众号

Java单机限流可以使用AtomicInteger,RateLimiter或Semaphore来实现,但是上述方案都不支持集群限流。集群限流的应用场景有两个,一个是网关,常用的方案有Nginx限流和Spring Cloud Gateway,另一个场景是与外部或者下游服务接口的交互,因为接口限制必须进行限流。

美团技术面试官:你知道Spring Cloud限流方案?

本文的主要内容为:

  • Redis和Lua的使用场景和注意事项,比如说KEY映射的问题。
  • Spring Cloud Gateway中限流的实现。

# 集群限流的难点

我们来探讨一下,如果将 RateLimiter扩展,让它支持集群限流,会遇到哪些问题。

RateLimiter会维护两个关键的参数 nextFreeTicketMicros和 storedPermits,它们分别是下一次填充时间和当前存储的令牌数。当 RateLimiter的 acquire函数被调用时,也就是有线程希望获取令牌时, RateLimiter会对比当前时间和 nextFreeTicketMicros,根据二者差距,刷新 storedPermits,然后再判断更新后的 storedPermits是否足够,足够则直接返回,否则需要等待直到令牌足够「Guava RateLimiter的实现比较特殊,并不是当前获取令牌的线程等待,而是下一个获取令牌的线程等待」。

由于要支持集群限流,所以 nextFreeTicketMicros和 storedPermits这两个参数不能只存在JVM的内存中,必须有一个集中式存储的地方。而且,由于算法要先获取两个参数的值,计算后在更新两个数值,这里涉及到竞态限制,必须要处理并发问题。

集群限流由于会面对相比单机更大的流量冲击,所以一般不会进行线程等待,而是直接进行丢弃,因为如果让拿不到令牌的线程进行睡眠,会导致大量的线程堆积,线程持有的资源也不会释放,反而容易拖垮服务器。

# Redis和Lua

美团技术面试官:你知道Spring Cloud限流方案?

分布式限流本质上是一个集群并发问题,Redis单进程单线程的特性,天然可以解决分布式集群的并发问题。所以很多分布式限流都基于Redis,比如说Spring Cloud的网关组件Gateway。

Redis执行Lua脚本会以原子性方式进行,单线程的方式执行脚本,在执行脚本时不会再执行其他脚本或命令。并且,Redis只要开始执行Lua脚本,就会一直执行完该脚本再进行其他操作,所以Lua脚本中不能进行耗时操作。使用Lua脚本,还可以减少与Redis的交互,减少网络请求的次数。

Redis中使用Lua脚本的场景有很多,比如说分布式锁,限流,秒杀等,总结起来,下面两种情况下可以使用Lua脚本:

  • 使用 Lua 脚本实现原子性操作的CAS,避免不同客户端先读Redis数据,经过计算后再写数据造成的并发问题。
  • 前后多次请求的结果有依赖时,使用 Lua 脚本将多个请求整合为一个请求。

但是使用Lua脚本也有一些注意事项:

  • 要保证安全性,在 Lua 脚本中不要定义自己的全局变量,以免污染 Redis内嵌的Lua环境。因为Lua脚本中你会使用一些预制的全局变量,比如说 redis.call()
  • 要注意 Lua 脚本的时间复杂度,Redis 的单线程同样会阻塞在 Lua 脚本的执行中。
  • 使用 Lua 脚本实现原子操作时,要注意如果 Lua 脚本报错,之前的命令无法回滚,这和Redis所谓的事务机制是相同的。
  • 一次发出多个 Redis 请求,但请求前后无依赖时,使用 pipeline,比 Lua 脚本方便。
  • Redis要求单个Lua脚本操作的key必须在同一个Redis节点上。解决方案可以看下文对Gateway原理的解析。

# 性能测试

Redis虽然以单进程单线程模型进行操作,但是它的性能却十分优秀。总结来说,主要是因为:

  • 绝大部分请求是纯粹的内存操作
  • 采用单线程,避免了不必要的上下文切换和竞争条件
  • 内部实现采用非阻塞IO和epoll,基于epoll自己实现的简单的事件框架。epoll中的读、写、关闭、连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间。

所以,在集群限流时使用Redis和Lua的组合并不会引入过多的性能损耗。我们下面就简单的测试一下,顺便熟悉一下涉及的Redis命令。

美团技术面试官:你知道Spring Cloud限流方案?

通过上述简单的测试,我们可以发现本机情况下,使用Redis执行Lua脚本的性能极其优秀,一百万次执行,99.99%在5毫秒以下。

本来想找一下官方的性能数据,但是针对Redis + Lua的性能数据较少,只找到了几篇个人博客,感兴趣的同学可以去探索。

美团技术面试官:你知道Spring Cloud限流方案?

以上lua脚本的性能大概是zadd的70%-80%,但是在可接受的范围内,在生产环境可以使用。负载大概是zadd的1.5-2倍,网络流量相差不大,IO是zadd的3倍,可能是开启了AOF,执行了三次操作。

# Spring Cloud Gateway的限流实现

Gateway是微服务架构 SpringCloud的网关组件,它基于Redis和Lua实现了令牌桶算法的限流功能,下面我们就来看一下它的原理和细节吧。

美团技术面试官:你知道Spring Cloud限流方案?

Gateway基于Filter模式,提供了限流过滤器 RequestRateLimiterGatewayFilterFactory。只需在其配置文件中进行配置,就可以使用。具体的配置感兴趣的同学自行学习,我们直接来看它的实现。

RequestRateLimiterGatewayFilterFactory依赖 RedisRateLimiter的 isAllowed函数来判断一个请求是否要被限流抛弃。

美团技术面试官:你知道Spring Cloud限流方案?

需要注意的是 getKeys函数的prefix包含了"{id}",这是为了解决Redis集群键值映射问题。Redis的KeySlot算法中,如果key包含{},就会使用第一个{}内部的字符串作为hash key,这样就可以保证拥有同样{}内部字符串的key就会拥有相同slot。Redis要求单个Lua脚本操作的key必须在同一个节点上,但是Cluster会将数据自动分布到不同的节点,使用这种方法就解决了上述的问题。

然后我们来看一下Lua脚本的实现,该脚本就在Gateway项目的resource文件夹下。它就是如同 Guava的 RateLimiter一样,实现了令牌桶算法,只不过不在需要进行线程休眠,而是直接返回是否能够获取。

美团技术面试官:你知道Spring Cloud限流方案?

美团技术面试官:你知道Spring Cloud限流方案?

美团技术面试官:你知道Spring Cloud限流方案?

# 后记

Redis的主从异步复制机制可能丢失数据,出现限流流量计算不准确的情况,当然限流毕竟不同于分布式锁这种场景,对于结果的精确性要求不是很高,即使多流入一些流量,也不会影响太大。

正如Martin在他质疑Redis分布式锁RedLock文章中说的,Redis的数据丢弃了也无所谓时再使用Redis存储数据。

福利分享:给大家准备了一些一线互联网的面试题,需要的Java架构师方面的资料可以关注之后私信哈,回复“资料”领取免费架构视频资料,记得要点赞转发噢!!!

美团技术面试官:你知道Spring Cloud限流方案?

相关推荐