数据分析、机器学习必读书目系列——《利用Python进行数据分析》
数据分析、机器学习及人工智能必读书目——工具篇之《利用Python进行数据分析》
我们已经进入了全新的数据时代,大数据、云计算、物联网、机器学习、人工智能等等一系列技术纷至沓来,数据的管理和应用已经渗透到每一个行业和业务领域,成为当今以及未来商业运作的基础资产。可以说,只有掌握数据并善于运用数据的人,才会在竞争日益激烈的环境中寻得先机。 那么我们该怎么样学习大数据分析、机器学习以及人工智能?作者认为,学习大数据、机器学习和人工智能,所需的知识分为五个层次,一是数学知识;二是统计学知识;三是算法知识;四是工具知识;五是哲学思想知识。所谓工具知识,就是我们需要借助计算机软件来完成相关的分析和运算,目前大数据和机器学习领域热门的语言就是 R 和 Python。我们会分别介绍这五个层次所需要看的书,希望对大家有用。
《利用Python进行数据分析》
作者:Wes McKinney
译者:唐学韬 等
页数: 464
出版:机械工业出版社 2013年版
简要评价:
Python 正迅速成为数据科学家们钟爱的编程语言,原因在于其简单优雅,提供了一种覆盖范围更为广阔的编程语言生态系统,以及具有一定计算深度且性能良好的科学计算库。在 Python 自带的科学计算库中,Pandas 模块是最适于数据科学相关操作的工具。它与 Scikit-learn 两个模块几乎提供了数据科学家所需的全部工具。
本书正是由大名鼎鼎的 Pandas 模块的作者亲自撰写的,功底非常深厚,数据分析有着很丰富的经验,因此写出的书也是深入浅出,让人很容易就能看懂,非常适合刚刚接触 Python 的分析人员以及刚刚接触科学计算的 Python 程序员。当然,因为定位为入门,所以这本书相对比较浅显,看完之后想再进一步,还需要更加深入的钻研。
内容介绍:
还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。 由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。
将IPython这个交互式Shell作为你的首要开发环境。
学习NumPy(Numerical Python)的基础和高级知识。
从pandas库的数据分析工具开始。
利用高性能工具对数据进行加载、清理、转换、合并以及重塑。
利用matplotlib创建散点图以及静态或交互式的可视化结果。
利用pandas的groupby功能对数据集进行切片、切块和汇总操作。
处理各种各样的时间序列数据。
通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。
作者简介
Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相转载,是Python和开源技术社区公认的权威人物之一。开发了用于数据分析的著名开源Python库——pandas,广获用户好评。在创建Lambda Foundry(一家致力于企业数据分析的公司)之前,他曾是AQR Capital Management的定量分析师。
名家推荐
“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”
——Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一
书籍目录
前言
第1章 准备工作
本书主要内容
为什么要使用Python进行数据分析
重要的Python库
安装和设置
社区和研讨会
使用本书
致谢
第2章 引言
来自bit.ly的1.usa.gov数据
MovieLens 1M数据集
1880-2010年间全美婴儿姓名
小结及展望
第3章 IPython:一种交互式计算和开发环境
IPython基础
内省
使用命令历史
与操作系统交互
软件开发工具
IPython HTML Notebook
利用IPython提高代码开发效率的几点提示
高级IPython功能
致谢
第4章 NumPy基础:数组和矢量计算
NumPy的ndarray:一种多维数组对象
通用函数:快速的元素级数组函数
利用数组进行数据处理
用于数组的文件输入输出
线性代数
随机数生成
范例:随机漫步
第5章 pandas入门
pandas的数据结构介绍
基本功能
汇总和计算描述统计
处理缺失数据
层次化索引
其他有关pandas的话题
第6章 数据加载、存储与文件格式
读写文本格式的数据
二进制数据格式
使用HTML和Web API
使用数据库
第7章 数据规整化:清理、转换、合并、重塑
合并数据集
重塑和轴向旋转
数据转换
字符串操作
示例:USDA食品数据库
第8章 绘图和可视化
matplotlib API入门
pandas中的绘图函数
绘制地图:图形化显示海地地震危机数据
Python图形化工具生态系统
第9章 数据聚合与分组运算
GroupBy技术
数据聚合
分组级运算和转换
透视表和交叉表
示例:2012联邦选举委员会数据库
第10章 时间序列
日期和时间数据类型及工具
时间序列基础
日期的范围、频率以及移动
时区处理
时期及其算术运算
重采样及频率转换
时间序列绘图
移动窗口函数
性能和内存使用方面的注意事项
第11章 金融和经济数据应用
数据规整化方面的话题
分组变换和分析
更多示例应用
第12章 NumPy高级应用
ndarray对象的内部机理
高级数组操作
广播
ufunc高级应用
结构化和记录式数组
更多有关排序的话题
NumPy的matrix类
高级数组输入输出
性能建议
附录A Python语言精要
喜欢闲适安静的生活,懂一点计算机编程,懂一点统计学和数据分析。(爱编程爱统计)