大数据高可用集群环境安装与配置(09)——安装Spark高可用集群

1. 获取spark下载链接

登录官网:http://spark.apache.org/downloads.html 选择要下载的版本

2. 执行命令下载并安装

cd /usr/local/src/
wget http://mirrors.tuna.tsinghua.edu.cn/apache/spark/spark-2.4.4/spark-2.4.4-bin-hadoop2.7.tgz
tar -zxvf spark-2.4.4-bin-hadoop2.7.tgz
mv spark-2.4.4-bin-hadoop2.7 /usr/local/spark
cd /usr/local/spark/conf
mv spark-env.sh.template spark-env.sh

3. 修改spark-env.sh配置

vi spark-env.sh

在尾部添加下面配置,绑定hadoop的配置文件路径

export JAVA_HOME=/usr/local/java/jdk
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/Hadoop
export SPARK_HOME=/usr/local/spark

export SPARK_MASTER_PORT=7077
# 非高可用集群配置
# export SPARK_MASTER_IP=master
# 高可用集群配置
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=master:2181,master-backup:2181 -Dspark.deploy.zookeeper.dir=/spark"

4. 修改slaves配置

mv slaves.template slaves

vi slaves

删除里面的localhost,添加下面配置

node1
node2
node3

5. 指定spark的主节点

mv spark-defaults.conf.template spark-defaults.conf
vi spark-defaults.conf

添加下面配置

spark.master spark://master:7077,master-backup:7077

6. 修改服务器系统环境变量

所有服务器都需要按要求修改配置

vi /etc/profile

在尾部添加下面配置

export SPARK_HOME=/usr/local/spark/
export PATH=$PATH:$SPARK_HOME/bin
# 这里根据具体需要进行修改,如果你运行的是python2版本的程序,则不需要修改,python3的话后面需要安装相关环境
export PYSPARK_PYTHON=/usr/local/bin/python3

保存退出后,运行命令,让配置马上生效

source /etc/profile

7. 安装插件,配置pyspark访问hbase

拷贝spark访问hbase所需要的jar到spark/jar引用文件夹

cp /usr/local/hbase/lib/hbase-*.jar /usr/local/spark/jars/

配置Phoenix方式访问hbase

cd /usr/local/src/
wget http://www.apache.org/dyn/closer.lua/phoenix/apache-phoenix-5.0.0-HBase-2.0/bin/apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
tar -zxvf apache-phoenix-5.0.0-HBase-2.0-bin.tar.gz
mv apache-phoenix-5.0.0-HBase-2.0-bin /usr/local/phoenix
cd /usr/local/phoenix

# 复制phoenix服务插件到hbase目录下
cp phoenix-5.0.0-HBase-2.0-server.jar /usr/local/hbase/lib/
# 复制phoenix客户端插件到spark的jars目录下
cp phoenix-5.0.0-HBase-2.0-client.jar /usr/local/spark/jars/

8. 将spark同步到其他服务器上

rsync -avz /usr/local/spark/ master-backup:/usr/local/spark/
rsync -avz /usr/local/spark/ node1:/usr/local/spark/
rsync -avz /usr/local/spark/ node2:/usr/local/spark/
rsync -avz /usr/local/spark/ node3:/usr/local/spark/

# 将phoenix-5.0.0-HBase-2.0-server.jar同步到其他两台服务器上
rsync -avz /usr/local/hbase/lib/phoenix-5.0.0-HBase-2.0-server.jar master-backup:/usr/local/hbase/lib/
rsync -avz /usr/local/hbase/lib/phoenix-5.0.0-HBase-2.0-server.jar node1:/usr/local/hbase/lib/
rsync -avz /usr/local/hbase/lib/phoenix-5.0.0-HBase-2.0-server.jar node2:/usr/local/hbase/lib/
rsync -avz /usr/local/hbase/lib/phoenix-5.0.0-HBase-2.0-server.jar node3:/usr/local/hbase/lib/

9. 启动spark

重启hbase服务

/usr/local/hbase/bin/stop-hbase.sh
/usr/local/hbase/bin/start-hbase.sh

在master服务器上启动spark服务

/usr/local/spark/sbin/start-all.sh

在master-backup服务器上,启动第二个master

/usr/local/spark/sbin/start-master.sh

在master与master-backup服务器输入jps,都可以查看到Master

31681 Master

在其他服务器输入jps

28660 Worker

启动后就可以看到spark的web控制台地址了,在浏览器中输入地址访问,就可以查看到master节点的spark,Status为ALIVE,master-backup节点的spark,Status为STANDBY

http://192.168.10.90:8080/

http://192.168.10.91:8080/

10. 测试master切换

首先打开http://192.168.10.90:8080/ 与 http://192.168.10.91:8080/ 页面

在master服务器上输入jps,查看到Master服务的PID

16073 Master

然后输入命令,杀掉Master进程

kill -9 16073

运行scala(不运行的话,刷新页面看不到切换效果)

spark-shell --master spark://master:7077,master-backup:7077

接着在浏览器中刷新打开的两个页面,查看Workers是否已切换到另一台服务器上了

版权声明:本文原创发表于 博客园,作者为 AllEmpty 本文欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则视为侵权。

作者博客:http://www.cnblogs.com/EmptyFS/

相关推荐