长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功

机器之心报道

项目作者:微软NNI团队
参与:思源、一鸣

有了 AutoML,特征工程、神经架构和超参搜索这些炼金基本功再也不用担心了。作为科技巨头,微软也在 AutoML 上开源了自己的 NNI 库,这个库在 GitHub 上非常流行,长期盘踞在每日项目 Trending 榜。

长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功


根据 GitHub 项目上的介绍,NNI(Neural Network Intelligence)意图帮助用户使用自动机器学习算法、帮助进行算法加速、实现更好的超参数、神经架构和模型压缩,以及进行平台部署。大约一周前,这一开源项目更新到了 1.2 版本,并有了一个中文的官方文档。

项目地址:https://github.com/microsoft/nni

从观察来看,NNI 是相当全面的 AutoML 库了,支持很多模型、部署环境、框架和库,也提供了很多工具和数据集。不仅如此,除了使用 CLI 进行操作之外,还提供了可视化界面。

NNI 库特性有什么

根据微软 NNI 项目文档页面,我们可以了解到该项目希望自动设计并调优神经网络架构、复杂系统的参数等。NNI 拥有如下非常优秀的特性。

NNI (Neural Network Intelligence) 是一个工具包,可有效的帮助用户设计并调优机器学习模型的神经网络架构,复杂系统的参数(如超参)等。NNI 的特性包括:易于使用,可扩展,灵活,高效。

  • 易于使用:NNI 可通过 pip 安装,只需要在代码中添加几行,就可以利用 NNI 来调优超参数与模型架构。
  • 可扩展:调优超参或网络结构通常需要大量的计算资源。NNI 在设计时就支持了多种不同的计算资源,如远程服务器组、OpenPAI 和 Kubernetes 等训练平台。
  • 灵活:除了内置的算法,NNI 中还可以轻松集成自定义的超参调优算法、神经网络架构搜索算法、提前终止算法等等。还可以将 NNI 连接到更多的训练平台上,如云计算虚拟机集群、Kubernetes 服务等等。
  • 高效:NNI 在系统及算法级别上不停地优化,例如可通过 Trial 早期的反馈来加速调优过程。

下图显示了 NNI 的体系结构:

长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功


在 NNI 中,Experiment 指搜索最优超参组合的任务,它的运行过程可以分为:Tuner 接收搜索空间并生成配置;配置被提交到训练平台;执行结果返回 Tuner。在每次执行超参搜索时,我们只需要定义搜索空间,就能利用 NNI 内置的 Tuner/Assessor 以及训练平台搜索最好的超参组合。

这样的搜索三步走可以展示为:

长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功


NNI 库的广泛支持

从功能上,NNI 库具有命令行(NNICTL)和可视化界面(NNI Board)两个部分,用户可以使用它们进行管理。在 NNI 中,它内置了自动机器学习算法,并为流行的训练平台提供了很多支持。

长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功


具体而言,NNI 支持各种深度学习框架、机器学习库、很多机器学习算法(如超参调优搜索、神经架构搜索、模型剪枝和压缩、特征工程等)。除了这些之外,NNI 库还对部署环境进行了支持,不论是本地、远程还是基于 Kubernetes 平台都可以使用。

完整的支持功能列表如下:

长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功

长期盘踞热榜,微软官方AutoML库教你三步学会20+炼金基本功


正确的使用姿势

在 NNI 的整个架构中,自动模型压缩、自动特征工程都非常吸引人,但下面我们主要展示如何三步走搜索模型超参与架构。

超参搜索 超参搜索是 NNI 最核心、基本的功能,其中提供了许多流行的自动调优算法(Tuner)以及提前终止算法(Assessor)。这里我们可以通过 MNIST 展示如何使用 NNI 搜索最优超参。

首先对于一般的 MNIST 建模,它的主要过程可以描述为:

defrun_trial(params):#输入数据mnist=input_data.read_data_sets(params['data_dir'],one_hot=True)#构建网络mnist_network=MnistNetwork(channel_1_num=params['channel_1_num'],channel_2_num=params['channel_2_num'],conv_size=params['conv_size'],hidden_size=params['hidden_size'],pool_size=params['pool_size'],learning_rate=params['learning_rate'])mnist_network.build_network()test_acc=0.0withtf.Session()assess:#训练网络mnist_network.train(sess,mnist)#评估网络test_acc=mnist_network.evaluate(mnist)if__name__=='__main__':params={'data_dir':'/tmp/tensorflow/mnist/input_data','dropout_rate':0.5,'channel_1_num':32,'channel_2_num':64,'conv_size':5,'pool_size':2,'hidden_size':1024,'learning_rate':1e-4,'batch_num':2000,'batch_size':32}run_trial(params)

这段代码是没有搜索超参的,每次模型只能运行一组特定的超参数 params。一般来说,NNI 的输入是搜索空间、训练代码和配置文件三部分,我们可以定义一个循环,每次向训练代码传入一组超参数,并记录这组超参的结果。等循环结束后,我们就能从记录的结果中找到最优超参数。

下面让我们三步走搜索一组漂亮的超参,注意其中「-」表示原来标准代码该删除的内容,「+」表示采用 NNI 搜索超参该新加的代码。

1. 定义 JSON 格式的搜索空间文件,包括所有需要搜索的超参的名称和分布(离散和连续值均可)。

-params={'data_dir':'/tmp/tensorflow/mnist/input_data','dropout_rate':0.5,'channel_1_num':32,'channel_2_num':64,-'conv_size':5,'pool_size':2,'hidden_size':1024,'learning_rate':1e-4,'batch_num':2000,'batch_size':32}+{+"dropout_rate":{"_type":"uniform","_value":[0.5,0.9]},+"conv_size":{"_type":"choice","_value":[2,3,5,7]},+"hidden_size":{"_type":"choice","_value":[124,512,1024]},+"batch_size":{"_type":"choice","_value":[1,4,8,16,32]},+"learning_rate":{"_type":"choice","_value":[0.0001,0.001,0.01,0.1]}+}

2. 修改训练代码来从 NNI 获取超参,并返回 NNI 最终结果。

+importnnidefrun_trial(params):mnist=input_data.read_data_sets(params['data_dir'],one_hot=True)mnist_network=MnistNetwork(channel_1_num=params['channel_1_num'],channel_2_num=params['channel_2_num'],conv_size=params['conv_size'],hidden_size=params['hidden_size'],pool_size=params['pool_size'],learning_rate=params['learning_rate'])mnist_network.build_network()withtf.Session()assess:mnist_network.train(sess,mnist)test_acc=mnist_network.evaluate(mnist)+nni.report_final_result(test_acc)if__name__=='__main__':-params={'data_dir':'/tmp/tensorflow/mnist/input_data','dropout_rate':0.5,'channel_1_num':32,'channel_2_num':64,-'conv_size':5,'pool_size':2,'hidden_size':1024,'learning_rate':1e-4,'batch_num':2000,'batch_size':32}+params=nni.get_next_parameter()run_trial(params)

3. 定义 YAML 格式的配置文件,其中声明了搜索空间和训练代码文件的路径,以及调优算法、最大尝试次数、最大运行时间等信息。

authorName:defaultexperimentName:example_mnisttrialConcurrency:1maxExecDuration:1hmaxTrialNum:10trainingServicePlatform:local#搜索空间文件searchSpacePath:search_space.jsonuseAnnotation:falsetuner:builtinTunerName:TPE#运行的命令,以及Trial代码的路径trial:command:python3mnist.pycodeDir:.gpuNum:0


现在,完成了三步修改后,再执行运行命令就能自动搜索了,整个过程也就完成了。

神经架构搜索

除了超参搜索外,NNI 也支持了神经架构搜索。这里以 ENAS 为例。

在 ENAS 中,Contoller 学习在大的计算图中搜索最优子图的方式来发现神经网络。它通过在子模型间共享参数来实现加速,并获得好的性能。

NNI 中的 ENAS 算法目前支持 CIFAR10 上的 Macro/Micro 搜索空间搜索。具体使用方法如下:

#进入ENAS的代码目录cdexamples/nas/enas#在Macro搜索空间中搜索python3search.py--search-formacro#在Micro搜索空间中搜索python3search.py--search-formicro#查看更多选项python3search.py-h

NNI 项目中使用的是论文 Efficient Neural Architecture Search via Parameter Sharing 中的实现。使用的 py 文件可以在相关文件夹中找到。

目前项目仍在进一步开发的过程中,项目作者表示,希望有更多的志愿者加入到 NNI 的开源工作中,贡献新的代码和模型。

相关推荐