python数据结构的性能测试
import timeit def t1(): l = [] for i in range(10000): l = l + [i] def t2(): l = [] for i in range(10000): l.append(i) def t3(): l = [i for i in range(10000)] def t4(): l = list(range(10000)) def t5(): l = [] for i in range(10000): l.insert(0,i) from timeit import Timer timer1 = Timer("t1()", "from __main__ import t1") timer2 = Timer("t2()", "from __main__ import t2") timer3 = Timer("t3()", "from __main__ import t3") timer4 = Timer("t4()", "from __main__ import t4") timer5 = Timer("t5()", "from __main__ import t5") print("拼接", timer1.timeit(number=100), "seconds") print("尾部插入 ", timer2.timeit(number=100), "seconds") print("头部插入 ", timer5.timeit(number=100), "seconds") print("列表生成式 ", timer3.timeit(number=100), "seconds") print("list生成 ", timer4.timeit(number=100), "seconds")
结果
拼接 13.677228502 seconds
尾部插入 0.10198352399999955 seconds
头部插入 2.405467333999999 seconds
列表生成式 0.04342989099999883 seconds
list生成 0.029161853999998044 seconds
结论
从结果可以看出,append从尾端添加元素效率远远高于insert从顶端添加元素并且
使用list(range())生成的效率意外的要比其他的高的多!!! 惊了!
list内置函数的复杂度
注:k为变化值,如 切片 k=y-x
字典内置函数的复杂度:
补充:
timeit模块
timeit模块可以用来测试一小段Python代码的执行速度。
class timeit.Timer(stmt=‘pass‘, setup=‘pass‘, timer=<timer function>)
Timer是测量小段代码执行速度的类。
stmt参数是要测试的代码语句(statment);
setup参数是运行代码时需要的设置;
timer参数是一个定时器函数,与平台有关。
timeit.Timer.timeit(number=1000000)
Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的耗时,一个float类型的秒数。
相关推荐
夜斗不是神 2020-11-17
huavhuahua 2020-11-20
Yasin 2020-11-16
xiaoseyihe 2020-11-16
千锋 2020-11-15
diyanpython 2020-11-12
chunjiekid 2020-11-10
wordmhg 2020-11-06
YENCSDN 2020-11-17
lsjweiyi 2020-11-17
houmenghu 2020-11-17
Erick 2020-11-17
HeyShHeyou 2020-11-17
以梦为马不负韶华 2020-10-20
lhtzbj 2020-11-17
pythonjw 2020-11-17
dingwun 2020-11-16
lhxxhl 2020-11-16