【Python】Matplotlib绘图库初探
Matplotlib是Python的2D&3D绘图库,产生各种已经拷贝格式和交互幻剑中跨平台形式的印刷质量图标。Matplot语法与Matlab相似,绘图绘图功能强大,而且十分容易上手。
“个人永远不能超过集体的力量”(Ken Blanchard)。Python强大的原因之一就在于其开源,有很多优秀的程序员为其提供了丰富的类库。Matplotlib就是其中之一,但他的创始人John D. Hunter英年早逝,在今年8月份死于治疗癌症引起的并发症。向这位优秀的程序员致敬!
安装matplot之前先要安装Numpy。
Numpy也是python的一个扩展包,提供基础的科学计算,包括:
- 强大的N维矩阵对象
- C/C++ 和 Fortran 代码集成工具
- 有用的线性代数、傅立叶转换和随机数生成函数
Numpy的下载地址:http://scipy.org/Download
Matlabplot的下载地址:https://github.com/matplotlib/matplotlib/downloads
也可以从我的csdn资源下载(附有说明文档):
安装都很简单,一路双击就可以~
以下是一个简单的绘制正弦三角函数y=sin(x)的例子。
# plot a sine wave from 0 to 4pi from pylab import * x_values = arange(0.0, math.pi * 4, 0.01) y_values = sin(x_values) plot(x_values, y_values, linewidth=1.0) xlabel('x') ylabel('sin(x)') title('Simple plot') grid(True) savefig("sin.png") show()效果如图:
pylab的plot函数与matlab很相似,也可以在后面增加属性值,可以用
help(pylab.plot)查看说明:
例如用‘r*’,即红色,星形来画图:
import os import math import pylab y_values = [] x_values = [] num = 0.0 #collect both num and the sine of num in a list while num < math.pi * 4: y_values.append(math.sin(num)) x_values.append(num) num += 0.1 pylab.plot(x_values,y_values,'r*') pylab.show()
Matplot中可以使用Latex来编辑公式。比如最上面那个Matplotlib的logo,背景的公式就是使用的Latex:
""" Thanks to Tony Yu <[email protected]> for the logo design """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm mpl.rcParams['xtick.labelsize'] = 10 mpl.rcParams['ytick.labelsize'] = 12 mpl.rcParams['axes.edgecolor'] = 'gray' axalpha = 0.05 #figcolor = '#EFEFEF' figcolor = 'white' dpi = 80 fig = plt.figure(figsize=(6, 1.1),dpi=dpi) fig.figurePatch.set_edgecolor(figcolor) fig.figurePatch.set_facecolor(figcolor) def add_math_background(): ax = fig.add_axes([0., 0., 1., 1.]) text = [] text.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$", (0.7, 0.2), 20)) text.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$", (0.35, 0.9), 20)) text.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$", (0.15, 0.3), 25)) #text.append((r"$E = mc^2 = \sqrt{{m_0}^2c^4 + p^2c^2}$", # (0.7, 0.42), 30)) text.append((r"$F_G = G\frac{m_1m_2}{r^2}$", (0.85, 0.7), 30)) for eq, (x, y), size in text: ax.text(x, y, eq, ha='center', va='center', color="#11557c", alpha=0.25, transform=ax.transAxes, fontsize=size) ax.set_axis_off() return ax def add_matplotlib_text(ax): ax.text(0.95, 0.5, 'matplotlib', color='#11557c', fontsize=65, ha='right', va='center', alpha=1.0, transform=ax.transAxes) def add_polar_bar(): ax = fig.add_axes([0.025, 0.075, 0.2, 0.85], polar=True) ax.axesPatch.set_alpha(axalpha) ax.set_axisbelow(True) N = 7 arc = 2. * np.pi theta = np.arange(0.0, arc, arc/N) radii = 10 * np.array([0.2, 0.6, 0.8, 0.7, 0.4, 0.5, 0.8]) width = np.pi / 4 * np.array([0.4, 0.4, 0.6, 0.8, 0.2, 0.5, 0.3]) bars = ax.bar(theta, radii, width=width, bottom=0.0) for r, bar in zip(radii, bars): bar.set_facecolor(cm.jet(r/10.)) bar.set_alpha(0.6) for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_visible(False) for line in ax.get_ygridlines() + ax.get_xgridlines(): line.set_lw(0.8) line.set_alpha(0.9) line.set_ls('-') line.set_color('0.5') ax.set_yticks(np.arange(1, 9, 2)) ax.set_rmax(9) if __name__ == '__main__': main_axes = add_math_background() add_polar_bar() add_matplotlib_text(main_axes) plt.show()
(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu未经允许请勿用于商业用途)
相关推荐
meylovezn 2020-09-15
wordmhg 2020-07-28
syThinkCool 2020-07-16
adamlovejw 2020-06-20
woxmh 2020-06-03
maybeyoucan 2020-05-17
jiahaohappy 2020-05-11
laohyx 2020-05-07
Tonybo 2020-04-27
liusarazhang 2020-04-10
tengyunjiawucom 2020-03-27
wangdaren 2020-03-27
Leonwey 2020-03-03
xinhao 2020-02-18
Jonderwu 2020-02-10
数据齿轮 2020-01-31
FrederickBala 2020-01-29
Laozizuiku 2020-01-13