Vgg Net Pytorch实现+论文解读

论文为VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION,主要讨论了在大规模图片识别中,卷积神经网络的深度对准确率的影响。本篇论文提出的vgg网络在2014年的ImageNet比赛中分别在定位和分类中获得了第一和第二的成绩。

改进创新点

VGGNet对2012年的AlexNet模型主要提出了两种改进思路:

  • 小卷积核(kernal size = 3x3)+小步幅(stride = 1)
  • 多尺度:使用多尺度图片来训练测试

卷积神经网络设置

架构

Vgg Net Pytorch实现+论文解读
结构特点

  • 整体结构上包含5组卷积层,卷积层不改变输出图片的尺寸。
  • 每层包含有1-4个卷积操作,分别在论文中对应不同的VGG结构。卷积核大小为3x3,步幅为1。
  • 每组卷积层后跟1个最大池化层,池化核大小为2x2,步幅为2,因此池化层会使得图片尺寸缩小为原来一半。论文中共设计了5组池化层,因此图片的尺寸会变为原来的1/32。
  • 最后跟3层全连接层

对比试验

论文中针对网络深度、卷积核尺寸、LRN操作方面做了对比试验,设计了6个VGG结构。如下图所示。
Vgg Net Pytorch实现+论文解读

为何使用3x3卷积核

  • 2个3x3卷积层的感受野 = 1个5x5卷积层的感受野。同理,3个3x3卷积层感受野 = 1个7x7卷积层感受野。这样加深了网络,同时由于激活函数的加入,增加了网络的非线性。
  • 参数量减少。这里作者举了一个例子,假设一个含有三层3x3卷积层堆叠的输入和输出都包含C个通道的网络,权重数量为3(32C^2)=27C^2; 而一个7x7的卷积层,需要72C2=49C2个权重参数,相对增加了81%。

为何使用1x1卷积核

  • 增加非线性,同时不影响感受野
  • 调整维度输出

训练

  • 初始化
    batch size为256,学习率初始化为0.01,用包含动量的小批量梯度下降。
    权重随机初始化,从0均值和0.01方差的正态分布中取值。偏差初始化为0。
  • 调整图片尺寸
    网络输入的图片尺寸为224x224,因此必须调整图片的尺寸。选取训练图像最小边为S,若S=224,则不需要裁剪;若S>>224,裁剪图像就会取图像的一小部分。这样选择的图片可以选取S>224的图片,作为多尺寸输入,只需要裁剪成224x224规格的图片即可。下面的测试将会分别固定尺寸测试和多尺寸测试。

测试

测试主要针对上面的6钟结构,然后加入了多尺寸输入训练以及测试。

测试的结果:

  • 加入了LRN,没有效果
  • 从11层到19层,随着层数的增大,错误率降低
  • 结构C(包含3个1x1卷积层)比网络B性能好,这意味着添加非线性层的确有用,但是使用卷积获取空间上下文信息更有用(D比C好)
  • 当深度达到19层时,错误率达到饱和
  • 加入多尺寸训练后,网络抵抗尺寸波动的性能增强

结论

本文评估了深度卷积网络(到19层)在大规模图片分类中的应用。
结果表明,深度有益于提高分类的正确率,通过在传统的卷积网络框架中使用更深的层能够在ImageNet数据集上取得优异的结果。

NOTE:

  • 每个图片或者特征图的维数看作4维:样本数 x 通道数c x 高h x 宽w
  • 卷积层看作5维:样本数 x 输出通道数cout x 输入通道数cin x 高h x 宽w
  • 全连接层看作2个维度:样本数 x (输出通道数cout * 高h * 宽w)

Pytorch实现VGGNet

import torch
import time
from torch import nn, optim
import torchvision
import sys

#定义VGG各种不同的结构和最后的全连接层结构
cfg = {
    'VGG11': [64, 'M', 128, 'M', 256,'M', 512, 'M', 512,'M'],
    'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
    'FC':    [512*7*7, 4096, 10]
}

#将数据展开成二维数据,用在全连接层之前和卷积层之后
class FlattenLayer(torch.nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()
    def forward(self, x): # x shape: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

class VGG(nn.Module):
    # nn.Module是一个特殊的nn模块,加载nn.Module,这是为了继承父类
    def __init__(self, vgg_name):
        super(VGG, self).__init__()
        # super 加载父类中的__init__()函数
        self.VGG_layer = self.vgg_block(cfg[vgg_name])
        self.FC_layer = self.fc_block(cfg['FC'])
    #前向传播算法
    def forward(self, x):
        out_vgg = self.VGG_layer(x)
        out = out_vgg.view(out_vgg.size(0), -1)
        # 这一步将out拉成out.size(0)的一维向量
        out = self.FC_layer(out_vgg)
        return out
    #VGG模块
    def vgg_block(self, cfg_vgg):
        layers = []
        in_channels = 1
        for out_channels in cfg_vgg:
            if out_channels == 'M':
                layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
            else:
                layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3,padding=1, bias=False))
                layers.append(nn.BatchNorm2d(out_channels))
                layers.append(nn.ReLU(inplace=True))
                in_channels = out_channels
        return nn.Sequential(*layers)
    #全连接模块
    def fc_block(self, cfg_fc):
        fc_net = nn.Sequential()
        fc_features, fc_hidden_units, fc_output_units = cfg_fc[0:]
        fc_net.add_module("fc", nn.Sequential(
            FlattenLayer(),
            nn.Linear(fc_features, fc_hidden_units),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(fc_hidden_units, fc_hidden_units),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(fc_hidden_units, fc_output_units)
        ))
        return fc_net

#加载MNIST数据,返回训练数据集和测试数据集
def load_data_fashion_mnist(batch_size, resize=None, root='~/chnn/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())

    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_iter, test_iter

#测试准确率
def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: # 自定义的模型, 3.13节之后不会用到, 不考虑GPU
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum / n

#模型训练,定义损失函数、优化函数
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    batch_count = 0
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

def main():
    net = VGG('VGG16')
    print(net)

    #一个batch_size为64张图片,进行梯度下降更新参数
    batch_size = 64
    #使用cuda来训练
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    #加载MNIST数据集,返回训练集和测试集
    train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224)
    lr, num_epochs = 0.001, 5
    #使用Adam优化算法替代传统的SGD,能够自适应学习率
    optimizer = torch.optim.Adam(net.parameters(), lr=lr)
    #训练--迭代更新参数
    train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

main()

NOTE:

程序中使用MNIST数据集,pytorch打印的网络结构为:
Vgg Net Pytorch实现+论文解读
Vgg Net Pytorch实现+论文解读

训练结果为:
Vgg Net Pytorch实现+论文解读

因为使用原文结构参数量太大,造成显存爆满,于是将结构中的通道数变为1/8。训练结果中,迭代了5次后,训练集精确度提高,但测试集精度结果不是很理想。

已经将代码上传到GitHub:https://github.com/chnngege/vgg-pytorch

相关推荐