查询Sqlserver数据库死锁的一个存储过程分享
使用sqlserver作为数据库的应用系统,都避免不了有时候会产生死锁, 死锁出现以后,维护人员或者开发人员大多只会通过sp_who来查找死锁的进程,然后用sp_kill杀掉。利用sp_who_lock这个存储过程,可以很方便的知道哪个进程出现了死锁,出现死锁的问题在哪里.
创建sp_who_lock存储过程
CREATE procedure sp_who_lock as begin declare @spid int declare @blk int declare @count int declare @index int declare @lock tinyint set @lock=0 create table #temp_who_lock ( id int identity(1,1), spid int, blk int ) if @@error<>0 return @@error insert into #temp_who_lock(spid,blk) select 0 ,blocked from (select * from master..sysprocesses where blocked>0)a where not exists(select * from master..sysprocesses where a.blocked =spid and blocked>0) union select spid,blocked from master..sysprocesses where blocked>0 if @@error<>0 return @@error select @count=count(*),@index=1 from #temp_who_lock if @@error<>0 return @@error if @count=0 begin select '没有阻塞和死锁信息' return 0 end while @index<=@count begin if exists(select 1 from #temp_who_lock a where id>@index and exists(select 1 from #temp_who_lock where id<=@index and a.blk=spid)) begin set @lock=1 select @spid=spid,@blk=blk from #temp_who_lock where id=@index select '引起数据库死锁的是: '+ CAST(@spid AS VARCHAR(10)) + '进程号,其执行的SQL语法如下' select @spid, @blk dbcc inputbuffer(@spid) dbcc inputbuffer(@blk) end set @index=@index+1 end if @lock=0 begin set @index=1 while @index<=@count begin select @spid=spid,@blk=blk from #temp_who_lock where id=@index if @spid=0 select '引起阻塞的是:'+cast(@blk as varchar(10))+ '进程号,其执行的SQL语法如下' else select '进程号SPID:'+ CAST(@spid AS VARCHAR(10))+ '被' + '进程号SPID:'+ CAST(@blk AS VARCHAR(10)) +'阻塞,其当前进程执行的SQL语法如下' dbcc inputbuffer(@spid) dbcc inputbuffer(@blk) set @index=@index+1 end end drop table #temp_who_lock return 0 end GO
在查询分析器中执行:
exec sp_who_lock
直到最后的结果为:**
相关推荐
zhaojp0 2020-06-27
hungzz 2020-06-16
crowds 2020-05-06
oArvin 2020-01-03
Omega 2020-08-16
zjyzz 2020-08-16
minggehenhao 2020-07-28
zjuwangleicn 2020-06-25
wenjieyatou 2020-06-17
liaomingwu 2020-06-16
muzirigel 2020-06-14
gsmfan 2020-06-14
ncomoon 2020-06-14
xiaobaif 2020-06-13
Rain 2020-06-12
hanshangzhi 2020-06-12
talkingDB 2020-06-12
IBMRational 2020-06-09