JavaScript数据结构与算法(十一)二叉堆
二叉堆数据结构是一种特殊的二叉树,他能高效、快速的找出最大值和最小值,常应用于优先队列和著名的堆排序算法中。
二叉堆
二叉堆有以下两个特性:
- 是一颗完全二叉树,表示数的每一层都有左侧和右侧子节点(除最后一层的叶节点),并且最后一层的叶节点尽可能是左侧子节点
- 二叉堆不是最小堆就是最大堆,所有节点都大于等于(最大堆)或者小于等于(最小堆)每个他的子节点。
创建最小堆类
class MinHeap { constructor(compareFn = defaultCompare) { this.compareFn = compareFn; this.heap = []; } }
二叉堆的数组表示
static getLeftIndex(index) { return (2 * index) + 1; } static getRightIndex(index) { return (2 * index) + 2; } static getParentIndex(index) { if (index === 0) { return undefined; } return Math.floor((index - 1) / 2); } size() { return this.heap.length; } isEmpty() { return this.size() <= 0; } clear() { this.heap = []; }
查找二叉堆最小值或者最大值
findMinimum() { return this.isEmpty() ? undefined : this.heap[0]; }
交换函数实现
function swap(array, a, b) { /* const temp = array[a]; array[a] = array[b]; array[b] = temp; */ [array[a], array[b]] = [array[b], array[a]]; }
向堆中插入新值
insert(value) { if (value != null) { const index = this.heap.length; this.heap.push(value); this.siftUp(index); return true; } return false; }; //上移操作 siftUp(index) { let parent = this.getParentIndex(index); while ( index > 0 && this.compareFn(this.heap[parent], this.heap[index]) === Compare.BIGGER_THAN ) { swap(this.heap, parent, index); index = parent; parent = this.getParentIndex(index); } }
二叉堆中导出最大值或最小值
extract() { if (this.isEmpty()) { return undefined; } if (this.size() === 1) { return this.heap.shift(); } const removedValue = this.heap[0]; this.heap[0] = this.heap.pop(); this.siftDown(0); return removedValue; }; //下移操作 siftDown(index) { let element = index; const left = MinHeap.getLeftIndex(index); const right = this.getRightIndex(index); const size = this.size(); if ( left < size && this.compareFn(this.heap[element], this.heap[left]) === Compare.BIGGER_THAN ) { element = left; } if ( right < size && this.compareFn(this.heap[element], this.heap[right]) === Compare.BIGGER_THAN ) { element = right; } if (index !== element) { swap(this.heap, index, element); this.siftDown(element); } }
创建最大堆类
class MaxHeap extends MinHeap { constructor(compareFn = defaultCompare) { super(compareFn); this.compareFn = compareFn; this.compareFn = reverseCompare(compareFn); } }
其他操作跟最小堆类一样,这里就不多加赘述。
堆排序算法
heapify(array) { if (array) { this.heap = array; } const maxIndex = Math.floor(this.size() / 2) - 1; for (let i = 0; i <= maxIndex; i++) { this.siftDown(i); } return this.heap; }; getAsArray() { return this.heap; }; //构建最大堆函数 function buildMaxHeap(array, compareFn) { for (let i = Math.floor(array.length / 2);i >= 0; i -= 1){ heapify(array, i, array.length, compareFn); return array; } } //堆排序算法实现 function heapSort(array, compareFn = defaultCompare) { let heapSize = array.length; //用数组创建一个最大堆用作源数据 buildMaxHeap(array, compareFn); while(heapSize > 1){ //创建最大堆后,最大的值会被存储在堆的第一个位置,我们将它替换为堆的最后一个值,将堆的大小-1 swap(array, 0, --heapSize); //将堆的根节点下移并重复步骤2直到堆的大小为1 heapify(array, 0, heapSize, compareFn); } return array; }
相关推荐
ELEMENTS爱乐小超 2020-07-04
基尔霍夫的猫 2019-06-30
slxshare 2017-09-29
LHpython 2019-04-22
PHP100 2019-03-28