S3C2410 Linux IIS音频设备驱动分析
在音频驱动程序中有2个比较重要的结构体:
typedef struct {
int size; /* buffer size */
char *start; /* point to actual buffer */(内存虚拟地址起始地址)
dma_addr_t dma_addr; /* physical buffer address */(内存物理地址起始地址)
struct semaphore sem; /* down before touching the buffer */
int master; /* owner for buffer allocation, contain size when true */(内存大小)
} audio_buf_t;
typedef struct {
audio_buf_t *buffers; /* pointer to audio buffer structures */
audio_buf_t *buf; /* current buffer used by read/write */
u_int buf_idx; /* index for the pointer above */
u_int fragsize; /* fragment i.e. buffer size */(音频缓冲区片大小)
u_int nbfrags; /* nbr of fragments */(音频缓冲区片数量)
dmach_t dma_ch; /* DMA channel (channel2 for audio) */
} audio_stream_t;
这是一个管理多缓冲区的结构体,结构体audio_stream_t 为音频流数据组成了一个环形缓冲区。(audio_buf_t *buffers 同触摸屏驱动中struct TS_DEV 结构中的TS_RET buf[MAX_TS_BUF] 意义一样,都为环形缓冲区)用audio_buf_t 来管理一段内存,在用audio_stream_t 来管理N 个audio_buf_t。
音频驱动的file_operations 结构定义如下:
static struct file_operations smdk2410_audio_fops = {
llseek: smdk2410_audio_llseek,
write: smdk2410_audio_write,
read: smdk2410_audio_read,
poll: smdk2410_audio_poll,
ioctl: smdk2410_audio_ioctl,
open: smdk2410_audio_open,
release: smdk2410_audio_release
};
static struct file_operations smdk2410_mixer_fops = {
ioctl: smdk2410_mixer_ioctl,
open: smdk2410_mixer_open,
release: smdk2410_mixer_release
};
这里定义了两种类型设备的file_operations 结构,前者是DSP 设备,后者是混频器设备。
------------------------------------------------------------------------
和往常一样,先来看一下加载驱动模块时的初始化函数:
int __init s3c2410_uda1341_init(void)
该函数首先会初始化I/O 和UDA1341 芯片,然后申请2个DMA 通道用于音频传输。
local_irq_save(flags);
调用该宏函数来保存IRQ 中断使能状态,并禁止IRQ 中断。
在/kernel/include/asm-arm/system.h 文件中:
/* For spinlocks etc */
#define local_irq_save(x) __save_flags_cli(x)
#define local_irq_restore(x) __restore_flags(x)
在/kernel/include/asm-arm/proc-armo/system.h 文件中:
/*
* Save the current interrupt enable state & disable IRQs
*/
#define __save_flags_cli(x) \
do { \
unsigned long temp; \
__asm__ __volatile__( \
" mov %0, pc @ save_flags_cli\n" \
" orr %1, %0, #0x08000000\n" \
" and %0, %0, #0x0c000000\n" \
" teqp %1, #0\n" \
: "=r" (x), "=r" (temp) \
: \
: "memory"); \
} while (0)
最后用ARM 汇编指令实现了保存IRQ 和FIQ 的中断使能状态,并禁止IRQ 中断。
/*
* restore saved IRQ & FIQ state
*/
#define __restore_flags(x) \
do { \
unsigned long temp; \
__asm__ __volatile__( \
" mov %0, pc @ restore_flags\n" \
" bic %0, %0, #0x0c000000\n" \
" orr %0, %0, %1\n" \
" teqp %0, #0\n" \
: "=&r" (temp) \
: "r" (x) \
: "memory"); \
} while (0)
最后用ARM 汇编指令实现了恢复IRQ 和FIQ 的中断使能状态。
/* GPB 4: L3CLOCK, OUTPUT */
set_gpio_ctrl(GPIO_L3CLOCK);
/* GPB 3: L3DATA, OUTPUT */
set_gpio_ctrl(GPIO_L3DATA);
/* GPB 2: L3MODE, OUTPUT */
set_gpio_ctrl(GPIO_L3MODE);
/* GPE 3: I2SSDI */
set_gpio_ctrl(GPIO_E3 | GPIO_PULLUP_EN | GPIO_MODE_I2SSDI);
/* GPE 0: I2SLRCK */
set_gpio_ctrl(GPIO_E0 | GPIO_PULLUP_EN | GPIO_MODE_I2SSDI);
/* GPE 1: I2SSCLK */
set_gpio_ctrl(GPIO_E1 | GPIO_PULLUP_EN | GPIO_MODE_I2SSCLK);
/* GPE 2: CDCLK */
set_gpio_ctrl(GPIO_E2 | GPIO_PULLUP_EN | GPIO_MODE_CDCLK);
/* GPE 4: I2SSDO */
set_gpio_ctrl(GPIO_E4 | GPIO_PULLUP_EN | GPIO_MODE_I2SSDO);
接下来马上设置与UDA1341 芯片相关GPIO 引脚。这里首先将GPB4,GPB3,GPB2 这3个GPIO 引脚设置为输出模式,参考原理图后,得知这3个引脚分别连接UDA1341 芯片的L3CLOCK,L3DATA,L3MODE 这3个引脚,作为这3个信号的输入。
在/kernel/drivers/sound/s3c2410-uda1341.c 文件中:
#define GPIO_L3CLOCK (GPIO_MODE_OUT | GPIO_PULLUP_DIS | GPIO_B4)
#define GPIO_L3DATA (GPIO_MODE_OUT | GPIO_PULLUP_DIS | GPIO_B3)
#define GPIO_L3MODE (GPIO_MODE_OUT | GPIO_PULLUP_DIS | GPIO_B2)
然后继续设置与IIS 控制器输出信号相关GPIO 引脚。将GPE0~GPE4 这5个引脚设置为IIS 接口的信号模式。需要通过配置GPECON 寄存器来设定该端口管脚的输出模式,对应位如下:
[9:8] [7:6] [5:4] [3:2] [1:0]
GPE4 GPE3 GPE2 GPE1 GPE0
参考S3C2410 芯片datasheet 的I/O口章节,都要设为10(二进制)。
local_irq_restore(flags);
设置完GPIO 口的工作模式,就可以前面已经分析过的local_irq_restore 宏函数来恢复IRQ 和FIQ 的中断使能状态。
init_uda1341();
这里调用了init_uda1341 函数来初始化UDA1341 芯片,该函数会在后面说明。
output_stream.dma_ch = DMA_CH2;
if (audio_init_dma(&output_stream, "UDA1341 out")) {
audio_clear_dma(&output_stream);
printk( KERN_WARNING AUDIO_NAME_VERBOSE
": unable to get DMA channels\n" );
return -EBUSY;
}
input_stream.dma_ch = DMA_CH1;
if (audio_init_dma(&input_stream, "UDA1341 in")) {
audio_clear_dma(&input_stream);
printk( KERN_WARNING AUDIO_NAME_VERBOSE
": unable to get DMA channels\n" );
return -EBUSY;
}
在全局变量中定义了,两个audio_stream_t 结构的变量,分别是output_stream 和input_stream,一个作为输出音频缓冲区,一个作为输入音频缓冲区。
将输出音频缓冲区的DMA 通道设为通道2,输入音频缓冲区的DMA 通道设为通道1。
在/kernel/include/asm-arm/arch-s3c2410/dma.h 文件中:
#define DMA_CH0 0
#define DMA_CH1 1
#define DMA_CH2 2
#define DMA_CH3 3
通过查阅S3C2410 芯片datasheet 中的DMA 章节,知道该芯片共有4个DMA 通道,DMA 控制器的每个通道可以从4个DMA 源中选择一个DMA 请求源。其中,通道1具有IIS 输入源,而通道2具有IIS 输出和输入源。所以要以全双工模式进行音频数据传输的话,只有将输出音频缓冲区的设为DMA 通道2,输入音频缓冲区设为DMA 通道1。
接着调用2次audio_init_dma 函数来分别对输出和输入音频缓冲区的DMA 通道进行初始化设置。该函数比较简单,定义如下:
static int __init audio_init_dma(audio_stream_t * s, char *desc)
{
if(s->dma_ch == DMA_CH2)
return s3c2410_request_dma("I2SSDO", s->dma_ch, audio_dmaout_done_callback, NULL);
else if(s->dma_ch == DMA_CH1)
return s3c2410_request_dma("I2SSDI", s->dma_ch, NULL ,audio_dmain_done_callback);
else
return 1;
}
这个函数其实就是对DMA 的通道号进行判断,然后调用了s3c2410_request_dma 函数来向内核申请一个DMA 通道。
在/kernel/arch/arm/mach-s3c2410/dma.c 文件中:
int s3c2410_request_dma(const char *device_id, dmach_t channel,
dma_callback_t write_cb, dma_callback_t read_cb)
在该函数中会分配DMA 通道,并申请DMA 中断,即当DMA 传输结束时,会响应中断请求,调用回调函数。这里的参数中,device_id 为设备id 号,用字符串来表示;channel 为DMA 通道号,将前面定义的通道号1,2传入;write_cb 和read_cb 分别指向DMA 发送和读取结束时调用的函数,即DMA 传输结束时调用的回调函数。
在该函数中有:
err = request_irq(dma->irq, dma_irq_handler, 0 * SA_INTERRUPT,
device_id, (void *)dma);
即申请了一个DMA 的中断号,中断处理子程序为dma_irq_handler 函数,然后:
dma->write.callback = write_cb;
dma->read.callback = read_cb;
将读写DMA 中断的两个回调函数指针传入。
在/kernel/arch/arm/mach-s3c2410/dma.c 文件中:
static void dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
s3c2410_dma_t *dma = (s3c2410_dma_t *)dev_id;
DPRINTK(__FUNCTION__"\n");
s3c2410_dma_done(dma);
}
在中断处理子程序中,调用了s3c2410_dma_done 函数,该函数定义如下:
static inline void s3c2410_dma_done(s3c2410_dma_t *dma)
{
dma_buf_t *buf = dma->curr;
dma_callback_t callback;
if (buf->write) callback = dma->write.callback;
else callback = dma->read.callback;
#ifdef HOOK_LOST_INT
stop_dma_timer();
#endif
DPRINTK("IRQ: b=%#x st=%ld\n", (int)buf->id, (long)dma->regs->DSTAT);
if (callback)
callback(buf->id, buf->size);
kfree(buf);
dma->active = 0;
process_dma(dma);
}
最后在s3c2410_dma_done 函数中,通过callback 函数指针调用了DMA 发送和读取的回调函数。
DMA 写入和读取的两个回调函数audio_dmaout_done_callback,audio_dmain_done_callback 会在后面说明。其中DMA 写入为音频输出,DMA 读取为音频输入。
在调用audio_init_dma 函数来对输出和输入音频缓冲区的DMA 通道进行初始化设置时,如果返回失败,则会调用audio_clear_dma 函数来释放已申请的DMA 通道。在audio_clear_dma 函数中直接调用了s3c2410_free_dma 函数来进行动作。
在/kernel/arch/arm/mach-s3c2410/dma.c 文件中:
void s3c2410_free_dma(dmach_t channel)
该函数中释放了已申请的DMA 通道,并调用了free_irq 函数来释放已分配的DMA 发送和读取结束的中断号。
audio_dev_dsp = register_sound_dsp(&smdk2410_audio_fops, -1);
audio_dev_mixer = register_sound_mixer(&smdk2410_mixer_fops, -1);
在驱动模块的初始化函数最后调用了register_sound_dsp,和register_sound_mixer 两个函数来分别注册驱动设备,前者注册为DSP 设备,后者注册为混频器设备。
在/kernel/drivers/sound/sound_core.c 文件中:
/**
* register_sound_dsp - register a DSP device
* @fops: File operations for the driver
* @dev: Unit number to allocate
*
* Allocate a DSP device. Unit is the number of the DSP requested.
* Pass -1 to request the next free DSP unit. On success the allocated
* number is returned, on failure a negative error code is returned.
*
* This function allocates both the audio and dsp device entries together
* and will always allocate them as a matching pair - eg dsp3/audio3
*/
int register_sound_dsp(struct file_operations *fops, int dev)
/**
* register_sound_mixer - register a mixer device
* @fops: File operations for the driver
* @dev: Unit number to allocate
*
* Allocate a mixer device. Unit is the number of the mixer requested.
* Pass -1 to request the next free mixer unit. On success the allocated
* number is returned, on failure a negative error code is returned.
*/
int register_sound_mixer(struct file_operations *fops, int dev)
这两个函数的参数一样,fops 为传给内核的file_operations 结构中的接口函数,dev 为分配的设备序号,设为-1 表示由内核自动分配一个空闲的序号。