分布式实时日志分析解决方案 ELK 部署架构

原文链接:http://www.importnew.com/27705.html

一、概述

ELK已经成为目前最流行的集中式日志解决方案,它主要是由Beats、Logstash、Elasticsearch、Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架构以及相关问题解决。

Filebeat:Filebeat是一款轻量级,占用服务资源非常少的数据收集引擎,它是ELK家族的新成员,可以代替Logstash作为在应用服务器端的日志收集引擎,支持将收集到的数据输出到Kafka,Redis等队列。

Logstash:数据收集引擎,相较于Filebeat比较重量级,但它集成了大量的插件,支持丰富的数据源收集,对收集的数据可以过滤,分析,格式化日志格式。

Elasticsearch:分布式数据搜索引擎,基于ApacheLucene实现,可集群,提供数据的集中式存储,分析,以及强大的数据搜索和聚合功能。

Kibana:数据的可视化平台,通过该web平台可以实时的查看Elasticsearch中的相关数据,并提供了丰富的图表统计功能。

二、ELK常见部署架构

2.1、Logstash作为日志收集器

这种架构是比较原始的部署架构,在各应用服务器端分别部署一个Logstash组件,作为日志收集器,然后将Logstash收集到的数据过滤、分析、格式化处理后发送至Elasticsearch存储,最后使用Kibana进行可视化展示,这种架构不足的是:Logstash比较耗服务器资源,所以会增加应用服务器端的负载压力。

2.2、Filebeat作为日志收集器

该架构与第一种架构唯一不同的是:应用端日志收集器换成了Filebeat,Filebeat轻量,占用服务器资源少,所以使用Filebeat作为应用服务器端的日志收集器,一般Filebeat会配合Logstash一起使用,这种部署方式也是目前最常用的架构。

2.3、引入缓存队列的部署架构

该架构在第二种架构的基础上引入了Kafka消息队列(还可以是其他消息队列),将Filebeat收集到的数据发送至Kafka,然后在通过Logstasth读取Kafka中的数据,这种架构主要是解决大数据量下的日志收集方案,使用缓存队列主要是解决数据安全与均衡Logstash与Elasticsearch负载压力。

2.4、以上三种架构的总结

第一种部署架构由于资源占用问题,现已很少使用,目前使用最多的是第二种部署架构,至于第三种部署架构个人觉得没有必要引入消息队列,除非有其他需求,因为在数据量较大的情况下,Filebeat使用压力敏感协议向Logstash或Elasticsearch发送数据。如果Logstash正在繁忙地处理数据,它会告知Filebeat减慢读取速度。拥塞解决后,Filebeat将恢复初始速度并继续发送数据。

三、问题及解决方案

问题:如何实现日志的多行合并功能?

系统应用中的日志一般都是以特定格式进行打印的,属于同一条日志的数据可能分多行进行打印,那么在使用ELK收集日志的时候就需要将属于同一条日志的多行数据进行合并。

解决方案:使用Filebeat或Logstash中的multiline多行合并插件来实现

在使用multiline多行合并插件的时候需要注意,不同的ELK部署架构可能multiline的使用方式也不同,如果是本文的第一种部署架构,那么multiline需要在Logstash中配置使用,如果是第二种部署架构,那么multiline需要在Filebeat中配置使用,无需再在Logstash中配置multiline。

1、multiline在Filebeat中的配置方式:

filebeat.prospectors:

-

paths:

-/home/project/elk/logs/test.log

input_type:log

multiline:

pattern:'^\['

negate:true

match:after

output:

logstash:

hosts:["localhost:5044"]

pattern:正则表达式

negate:默认为false,表示匹配pattern的行合并到上一行;true表示不匹配pattern的行合并到上一行

match:after表示合并到上一行的末尾,before表示合并到上一行的行首

如:

pattern:'\['

negate:true

match:after

该配置表示将不匹配pattern模式的行合并到上一行的末尾

2、multiline在Logstash中的配置方式

input{

beats{

port=>5044

}

}

filter{

multiline{

pattern=>"%{LOGLEVEL}\s*\]"

negate=>true

what=>"previous"

}

}

output{

elasticsearch{

hosts=>"localhost:9200"

}

}

(1)Logstash中配置的what属性值为previous,相当于Filebeat中的after,Logstash中配置的what属性值为next,相当于Filebeat中的before。

(2)pattern=>“%{LOGLEVEL}\s*\]”中的LOGLEVEL是Logstash预制的正则匹配模式,预制的还有好多常用的正则匹配模式,详细请看:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns

问题:如何将Kibana中显示日志的时间字段替换为日志信息中的时间?

默认情况下,我们在Kibana中查看的时间字段与日志信息中的时间不一致,因为默认的时间字段值是日志收集时的当前时间,所以需要将该字段的时间替换为日志信息中的时间。

解决方案:使用grok分词插件与date时间格式化插件来实现

在Logstash的配置文件的过滤器中配置grok分词插件与date时间格式化插件,如:

input{

beats{

port=>5044

}

}

filter{

multiline{

pattern=>"%{LOGLEVEL}\s*\]\[%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}\]"

negate=>true

what=>"previous"

}

grok{

match=>["message","(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})"]

}

date{

match=>["customer_time","yyyyMMddHH:mm:ss,SSS"]//格式化时间

target=>"@timestamp"//替换默认的时间字段

}

}

output{

elasticsearch{

hosts=>"localhost:9200"

}

}

如要匹配的日志格式为:“[DEBUG][2017081110:07:31,359][DefaultBeanDefinitionDocumentReader:106]Loadingbeandefinitions”,解析出该日志的时间字段的方式有:

①通过引入写好的表达式文件,如表达式文件为customer_patterns,内容为:

CUSTOMER_TIME%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME}

注:内容格式为:[自定义表达式名称][正则表达式]

然后logstash中就可以这样引用:

filter{

grok{

patterns_dir=>["./customer-patterms/mypatterns"]//引用表达式文件路径

match=>["message","%{CUSTOMER_TIME:customer_time}"]//使用自定义的grok表达式

}

}

②以配置项的方式,规则为:(?<自定义表达式名称>正则匹配规则),如:

filter{

grok{

match=>["message","(?<customer_time>%{YEAR}%{MONTHNUM}%{MONTHDAY}\s+%{TIME})"]

}

}

问题:如何在Kibana中通过选择不同的系统日志模块来查看数据

一般在Kibana中显示的日志数据混合了来自不同系统模块的数据,那么如何来选择或者过滤只查看指定的系统模块的日志数据?

解决方案:新增标识不同系统模块的字段或根据不同系统模块建ES索引

1、新增标识不同系统模块的字段,然后在Kibana中可以根据该字段来过滤查询不同模块的数据

这里以第二种部署架构讲解,在Filebeat中的配置内容为:

filebeat.prospectors:

-

paths:

-/home/project/elk/logs/account.log

input_type:log

multiline:

pattern:'^\['

negate:true

match:after

fields://新增log_from字段

log_from:account

-

paths:

-/home/project/elk/logs/customer.log

input_type:log

multiline:

pattern:'^\['

negate:true

match:after

fields:

log_from:customer

output:

logstash:

hosts:["localhost:5044"]

通过新增:log_from字段来标识不同的系统模块日志

2、根据不同的系统模块配置对应的ES索引,然后在Kibana中创建对应的索引模式匹配,即可在页面通过索引模式下拉框选择不同的系统模块数据。

这里以第二种部署架构讲解,分为两步:

①在Filebeat中的配置内容为:

filebeat.prospectors:

-

paths:

-/home/project/elk/logs/account.log

input_type:log

multiline:

pattern:'^\['

negate:true

match:after

document_type:account

-

paths:

-/home/project/elk/logs/customer.log

input_type:log

multiline:

pattern:'^\['

negate:true

match:after

document_type:customer

output:

logstash:

hosts:["localhost:5044"]

通过document_type来标识不同系统模块

②修改Logstash中output的配置内容为:

output{

elasticsearch{

hosts=>"localhost:9200"

index=>"%{type}"

}

}

在output中增加index属性,%{type}表示按不同的document_type值建ES索引

四、总结

本文主要介绍了ELK实时日志分析的三种部署架构,以及不同架构所能解决的问题,这三种架构中第二种部署方式是时下最流行也是最常用的部署方式,最后介绍了ELK作在日志分析中的一些问题与解决方案,说在最后,ELK不仅仅可以用来作为分布式日志数据集中式查询和管理,还可以用来作为项目应用以及服务器资源监控等场景,更多内容请看官网。

相关推荐