管网平差的python程序
在市政给水管网当中,管网平差的目的是在已知节点流量、管段长度的情况下,求得各管段流量和对应的经济管径。本科生学习阶段了解并掌握管网平差原理及方法是必不可少的环节。
在下面的程序当中,将利用哈代克罗斯法求得管段流量。
程序分为三个.py文件:
init_input.py主要是用来输入管网节点编号列表、节点流量列表、管段列表(两端节点列表表示)、管段长度列表。所有的元素应当在列表的对应位置。第一个节点流量为负,表示水厂输入水至管网当中。管段列表当中应当是小节点编号在前,大节点编号在后。
pingcha.py主要是用来对init_input.py文件中的数据进行处理,通过numpy当中的np.linalg.lstsq得出初始流量,准备在back_cal.py当中进行哈代克罗斯法迭代求解管段流量。另外在文件中用算法求出所有环路。算法的原理近乎暴力。首先遍历搜索出所有始、终两点的路径。再判断始、终两点是否直接连接,若是,则成环保留,反之舍去路径。
back_cal.py主要用来哈代克罗斯法迭代,输出结果,并计算程序运行时间。
运用此程序,应先在init_input.py仿照格式填写出管网特征,保存。之后可双击运行back_cal.py,也可在python自带的IDLE下运行。
值得注意的是当有deadlink时,应把支状部分简化到最近的环路节点上。
init_input.py
‘‘‘ dot_set = [0, 1, 2, 3, 4] dot_set_quantity = [-100, 10, 20, 50, 20] path_set = [[0, 1], [0, 2], [1, 3], [2, 3], [2, 4], [3, 4]] diameter_set = [200, 200, 200, 200, 200, 200]#管径列表 length_set = [300, 300, 300, 300, 300, 300]#管长列表 #生成图 graph = {} for k in dot_set: graph[k] = [] print(graph) for k, v in path_set: graph[k].append(v) graph[v].append(k) print(graph) ‘‘‘ dot_set = [i for i in range(13)] dot_set_quantity = [-440, 50, 40, 50, 30, 20, 30, 25, 50, 25, 50, 30, 40] path_set = [[0, 11], [0, 12], [1,2], [1,4], [2,3], [2,8], [3,11], [4,5], [4,7], [5,6], [5,9], [6,10], [7,8], [7,9], [8,11], [8,12], [9,10], [10,12] ] diameter_set = [250 for i in range(18)]#管径列表 length_set = [400, 200, 400, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 400, 200, 200]#管长列表 #生成图 graph = {} for k in dot_set: graph[k] = [] #print(graph) for k, v in path_set: graph[k].append(v) graph[v].append(k) #print(graph)
pingcha.py
import numpy as np import init_input class dot(object): def __init__(self, number, quantity_of_flow): self.n = number self.q = quantity_of_flow class path(object): def __init__(self, number, start, finish, quantity_of_flow, diameter, length): self.n = number self.s = start self.f = finish self.q = quantity_of_flow self.d = diameter self.l = length class net(object): def __init__(self, dot_set, path_set): self.dote_set = dot_set self.path_set = path_set ‘‘‘管网模型参数‘‘‘ dot_set = init_input.dot_set dot_set_quantity = init_input.dot_set_quantity path_set = init_input.path_set diameter_set = init_input.diameter_set length_set = init_input.length_set graph = init_input.graph ‘‘‘创建节点类‘‘‘ dot_list = [] # dot类列表 for i in range(len(dot_set)): dot(i, dot_set_quantity[i]).n = i dot(i, dot_set_quantity[i]).q = dot_set_quantity[i] #print(dot(i, dot_set_quantity[i]).n, dot(i, dot_set_quantity[i]).q) D = dot(i, dot_set_quantity[i]) dot_list.append(D) #print(D) ‘‘‘创建管道类,初始流量为0‘‘‘ path_list = [] # path类列表 for i in range(len(path_set)): path(i, path_set[i][0], path_set[i][1], 0, diameter_set[i], length_set[i]).s = path_set[i][0] path(i, path_set[i][0], path_set[i][1], 0, diameter_set[i], length_set[i]).f = path_set[i][1] #print(i, path_set[i][0], path_set[i][1], 0) L = dot(i, path(i, path_set[i][0], path_set[i][1], 0, diameter_set[i], length_set[i])) path_list.append(L) A = np.zeros((len(dot_set), len(dot_set))) # A是节点连接矩阵 for i in path_set: A[i[0]][i[1]] = 1 A[i[1]][i[0]] = 1 #print(A) #**************************************************************************** # 假设某些管段流量,再求初始管段流量 v = len(dot_set) e = len(path_set) r = 2 + e - v #print(v, e, r) C = np.zeros((v, e)) for i in range(len(path_set)): m = 1 for j in path_set[i]: C[j][i] = m m = -1 #print(C) #解方程,得出一组初始流量 init_q, useless1, u2, u3 = np.linalg.lstsq(C, dot_set_quantity, rcond=0) #print(init_q) # 搜索所有环算法*************************************************************** # 找到所有从start到end的路径 def findAllPath(graph, start, end, path=[]): path = path + [start] if start == end: return [path] paths = [] # 存储所有路径 for node in graph[start]: if node not in path: newpaths = findAllPath(graph, node, end, path) for newpath in newpaths: paths.append(newpath) return paths allpath_list = [] for i in range(len(dot_set)): for j in range(i + 1, len(dot_set)): if A[i][j] == 1: allpath = findAllPath(graph, i, j) allpath_list.append(allpath) i = True while i == True: if len(allpath_list) != 1: allpath_list[0].extend(allpath_list[1]) del allpath_list[1] else: i = False allpath_list = allpath_list[0] for i in range(len(allpath_list) - 1): if len(allpath_list[i]) == 2: allpath_list[i] = [] continue for j in range(i + 1, len(allpath_list)): if sorted(allpath_list[i]) == sorted(allpath_list[j]): allpath_list[j] = [] if len(allpath_list[-1]) == 2: allpath_list[-1] = [] m = 0 for i in allpath_list: if i == []: m += 1 for i in range(m): allpath_list.remove([]) #print(allpath_list)
back_cal.py
import time time_1 = time.process_time() import numpy as np import pingcha A = pingcha.C #print(A) q = pingcha.init_q print(‘初始流量:\n‘,q) Q = pingcha.dot_set_quantity #print(Q) #allpath_list = [[0, 2, 3, 1], [0, 2, 4, 3, 1], [2, 4, 3]] allpath_list = pingcha.allpath_list #allpath_list点转换成线编号,存入pathlist_p,用管段标号表示环路 pathlist_p = [] for i in allpath_list: l = [] for j in range(len(i)): a = [i[j-1], i[j]] for n in range(len(pingcha.path_set)): if a[1]==pingcha.path_set[n][0] and a[0]==pingcha.path_set[n][1]: l.append(n) break elif a[0]==pingcha.path_set[n][0] and a[1]==pingcha.path_set[n][1]: l.append(-n) else: None pathlist_p.append(l) #print(pathlist_p)#挑选出的闭合环路 l = [[0 for i in range(len(pingcha.path_set))] for j in range(len(pathlist_p))] for i in range(len(pathlist_p)): for j in pathlist_p[i]: if j >= 0: l[i][j] = 1 else: l[i][-j] = -1 L = np.array(l) #print(L) s = [64*pingcha.length_set[i]/(3.1415926**2*100**2*pingcha.diameter_set[i]) for i in range(len(q))] h = [s[i]*(q[i]**2) for i in range(len(q))] #print(‘h:‘, h) x = 0 t = 1#闭合环路的水头误差,当所有环路小于0.01m,即完成平差 while t > 0.01: x+=1 closure_error_list = []#各环的闭合差组成的列表 for a in pathlist_p: closure_error = 0#a环的闭合差 sum_sq = 0#环路sq之和 for b in a: sum_sq += s[abs(b)]*abs(q[abs(b)]) if b >= 0:#可能会有bug,0号管没法判定方向 closure_error += h[abs(b)] else: closure_error -= h[abs(b)] closure_error_list.append(closure_error) rivision_q = closure_error/(2*sum_sq)#校正流量 for b in a: if (b>=0 and q[abs(b)]>0) or 62 (b<0 and q[abs(b)]<0): q[abs(b)] -= rivision_q elif (b<0 and q[abs(b)]>0) or 65 (b>=0 and q[abs(b)]<0): q[abs(b)] += rivision_q #根据经济流速选管径 t1 = 0 while True: t1 += 1 if t1 == 4: break v = abs((q[abs(b)]*1000))/(3.1415926*(pingcha.diameter_set[abs(b)]/2)**2)#流速 if v<0.6: if pingcha.diameter_set[abs(b)] <= 100: break else: pingcha.diameter_set[abs(b)] -= 50 elif v>0.9: if pingcha.diameter_set[abs(b)] >= 400: break else: pingcha.diameter_set[abs(b)] += 50 else: #print(pingcha.diameter_set[abs(b)]) #print(v) break #print(pingcha.diameter_set[abs(b)]) #print(v) #print(rivision_q) h = [s[i]*(q[i]**2) for i in range(len(q))] t = max([abs(i) for i in closure_error_list]) print(‘第‘, x,‘次平差‘) #print(‘h:‘, h) print(‘管段流量:\n‘, q) print(‘管径:‘, [i for i in pingcha.diameter_set]) #print(‘closure_error_list:‘, closure_error_list) print(‘环路最大水头闭合差:‘, t) time_2 = time.process_time() print(‘耗时:‘,time_2-time_1)
相关推荐
赶路人儿 2020-11-02
scuyxi 2020-10-25
csdnfelix 2020-10-18
代码之神 2020-10-15
Pokemogo 2020-09-17
MasterCui 2020-09-08
Morelia 2020-09-04
meylovezn 2020-08-30
Hannah 2020-08-19
hugebawu 2020-08-17
scuyxi 2020-08-16
hang0 2020-08-16
higher0 2020-08-11
Tips 2020-08-08
Tristahong 2020-08-05
xiesheng 2020-08-02
huakai 2020-07-26
RememberMePlease 2020-06-26
zangdaiyang 2020-06-25