简析gRPC client 连接管理
简析gRPC client 连接管理
背景
客户端skd 使用gRPC作为通信协议,定时(大概是120s)向服务器发送pingServer 请求。 服务端是80端口,如xxx:80.
问题
发现客户端不断的端口重连服务器的。 使用netstat -antp
如图, 如标红的服务器地址连接是TIME_WAIT,后面有和服务器建立连接 ESTABLISHED。 TIME_WAIT 状态表明是client 端主动断开了连接。 这和我之前的认知有点冲突,gRPC 应该是长连接,为什么这里每次都断开呢,这样不就长了短连接了吗? 而且客户端主动断开的,会不会是client端哪里有问题? 带着疑问,在client 抓了一包, 发现client 总是受到一个 length 为17 的包,然后就开始FIN 包,走TCP 挥手的流程。 使用WireShark 对tcpdump的结果查看,发现这个length 17 的包,是一个GOAWAY 包。
如图:
这个是HTTP2定义的一个“优雅”退出的机制。 这里有HTTP2 GOAWAY stream 包的说明。
根据之前的对gRPC的了解,gRPC client 会解析域名,然后会维护一个lb 负载均衡, 这个应该是gRPC对idle 连接的管理。pingServer 的时间间隔是120s, 但是gRPC 认为中间是idle连接, 所以通知client 关闭空闲连接? 为了验证这个想法,修改了一下gRPC 的demo, 因为我们client 端使用是cpp 的gRPC 异步调用方式, 所以更加gRPC 的异步demo, 写了一个简单访问服务器的async_client
代码:
#include <iostream> #include <memory> #include <string> #include <grpcpp/grpcpp.h> #include <grpc/support/log.h> #include <thread> #include "gateway.grpc.pb.h" using grpc::Channel; using grpc::ClientAsyncResponseReader; using grpc::ClientContext; using grpc::CompletionQueue; using grpc::Status; using yournamespace::PingReq; using yournamespace::PingResp; using yournamespace::srv; class GatewayClient { public: explicit GatewayClient(std::shared_ptr<Channel> channel) : stub_(srv::NewStub(channel)) {} // Assembles the client's payload and sends it to the server. //void PingServer(const std::string& user) { void PingServer() { // Data we are sending to the server. PingReq request; request.set_peerid("1111111111111113"); request.set_clientinfo(""); request.set_capability(1); request.add_iplist(4197554190); request.set_tcpport(8080); request.set_udpport(8080); request.set_upnpip(4197554190); request.set_upnpport(8080); request.set_connectnum(10000); request.set_downloadingspeed(100); request.set_uploadingspeed(10); request.set_maxdownloadspeed(0); request.set_maxuploadspeed(0); // Call object to store rpc data AsyncClientCall* call = new AsyncClientCall; // stub_->PrepareAsyncSayHello() creates an RPC object, returning // an instance to store in "call" but does not actually start the RPC // Because we are using the asynchronous API, we need to hold on to // the "call" instance in order to get updates on the ongoing RPC. call->response_reader = stub_->AsyncPing(&call->context, request, &cq_); // StartCall initiates the RPC call //call->response_reader->StartCall(); // Request that, upon completion of the RPC, "reply" be updated with the // server's response; "status" with the indication of whether the operation // was successful. Tag the request with the memory address of the call object. call->response_reader->Finish(&call->reply, &call->status, (void*)call); } // Loop while listening for completed responses. // Prints out the response from the server. void AsyncCompleteRpc() { void* got_tag; bool ok = false; // Block until the next result is available in the completion queue "cq". while (cq_.Next(&got_tag, &ok)) { // The tag in this example is the memory location of the call object AsyncClientCall* call = static_cast<AsyncClientCall*>(got_tag); // Verify that the request was completed successfully. Note that "ok" // corresponds solely to the request for updates introduced by Finish(). GPR_ASSERT(ok); if (call->status.ok()) std::cout << "xNetClient received: " << call->reply.code() << " task:" << call->reply.tasks_size() <<" pinginterval:"<< call->reply.pinginterval() << std::endl; else //std::cout << "RPC failed" << std::endl; std::cout << ": status = " << call->status.error_code() << " (" << call->status.error_message() << ")" << std::endl; // Once we're complete, deallocate the call object. delete call; } } private: // struct for keeping state and data information struct AsyncClientCall { // Container for the data we expect from the server. PingResp reply; // Context for the client. It could be used to convey extra information to // the server and/or tweak certain RPC behaviors. ClientContext context; // Storage for the status of the RPC upon completion. Status status; std::unique_ptr<ClientAsyncResponseReader<PingResp>> response_reader; }; // Out of the passed in Channel comes the stub, stored here, our view of the // server's exposed services. std::unique_ptr<srv::Stub> stub_; // The producer-consumer queue we use to communicate asynchronously with the // gRPC runtime. CompletionQueue cq_; }; int main(int argc, char** argv) { // Instantiate the client. It requires a channel, out of which the actual RPCs // are created. This channel models a connection to an endpoint (in this case, // localhost at port 50051). We indicate that the channel isn't authenticated // (use of InsecureChannelCredentials()). if (argc < 2){ std::cout << "usage: " <<argv[0]<< " domain:port" << std::endl; std::cout << "eg: " <<argv[0]<< " gw.xnet.xcloud.sandai.net:80" << std::endl; return 0; } GatewayClient xNetClient(grpc::CreateChannel( argv[1], grpc::InsecureChannelCredentials())); // Spawn reader thread that loops indefinitely std::thread thread_ = std::thread(&GatewayClient::AsyncCompleteRpc, &xNetClient); for (int i = 0; i < 1000; i++) { xNetClient.PingServer(); // The actual RPC call! std::this_thread::sleep_for(std::chrono::seconds(120)); } std::cout << "Press control-c to quit" << std::endl << std::endl; thread_.join(); //blocks forever return 0; }
接下来的时间很简单,运行一下。
使用netstat -natp 观察,可以重新。 async_client 也是断开,重连。
进一步调试发现,把发包的时间修改为10s 的时候,可以保持连接,大于10s基本上连接就会断开。
小结
小结一下:
gRPC 管理连接的方式,默认情况下,大于10s没有数据发送,gRPC 就会认为是个idle 连接。server 端会给client 端发送一个GOAWAY 的包。client 收到这个包之后就会主动关闭连接。下次需要发包的时候,就会重新建立连接。
目前还不知道是不是有配置项修改这个值,对gRPC 的机制还不是很熟,后面再研究一下。
相关推荐
darren0zdc 2020-10-16
ltstud 2020-07-24
Erick 2020-07-18
wujingsheng0 2020-06-16
xmwang0 2020-06-14
极品小肥羊 2020-05-31
小小书童 2020-05-20
极品小肥羊 2020-04-23
小小书童 2020-04-10
君小黑 2020-03-04
naiwenw 2020-02-18
小小书童 2020-02-22
dabaoge 2020-02-16
小小书童 2019-12-23
dabaoge 2020-01-25
MAC2007 2020-01-17
duanlove技术路途 2019-12-28