Python的MongoDB模块PyMongo操作方法集锦
开始之前当然要导入模块啦:
>>> import pymongo
下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。
建立于MongoClient 的连接:
client = MongoClient('localhost', 27017) # 或者 client = MongoClient('mongodb://localhost:27017/')
得到数据库:
>>> db = client.test_database # 或者 >>> db = client['test-database']
得到一个数据集合:
collection = db.test_collection # 或者 collection = db['test-collection']
MongoDB中的数据使用的是类似Json风格的文档:
>>> import datetime >>> post = {"author": "Mike", ... "text": "My first blog post!", ... "tags": ["mongodb", "python", "pymongo"], ... "date": datetime.datetime.utcnow()}
插入一个文档:
>>> posts = db.posts >>> post_id = posts.insert_one(post).inserted_id >>> post_id ObjectId('...')
找一条数据:
>>> posts.find_one() {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} >>> posts.find_one({"author": "Mike"}) {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} >>> posts.find_one({"author": "Eliot"}) >>>
通过ObjectId来查找:
>>> post_id ObjectId(...) >>> posts.find_one({"_id": post_id}) {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
不要转化ObjectId的类型为String:
>>> post_id_as_str = str(post_id) >>> posts.find_one({"_id": post_id_as_str}) # No result >>>
如果你有一个post_id字符串,怎么办呢?
from bson.objectid import ObjectId # The web framework gets post_id from the URL and passes it as a string def get(post_id): # Convert from string to ObjectId: document = client.db.collection.find_one({'_id': ObjectId(post_id)})
多条插入:
>>> new_posts = [{"author": "Mike", ... "text": "Another post!", ... "tags": ["bulk", "insert"], ... "date": datetime.datetime(2009, 11, 12, 11, 14)}, ... {"author": "Eliot", ... "title": "MongoDB is fun", ... "text": "and pretty easy too!", ... "date": datetime.datetime(2009, 11, 10, 10, 45)}] >>> result = posts.insert_many(new_posts) >>> result.inserted_ids [ObjectId('...'), ObjectId('...')]
查找多条数据:
>>> for post in posts.find(): ... post ... {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']} {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
当然也可以约束查找条件:
>>> for post in posts.find({"author": "Mike"}): ... post ... {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
获取集合的数据条数:
>>> posts.count()
或者说满足某种查找条件的数据条数:
>>> posts.find({"author": "Mike"}).count()
范围查找,比如说时间范围:
>>> d = datetime.datetime(2009, 11, 12, 12) >>> for post in posts.find({"date": {"$lt": d}}).sort("author"): ... print post ... {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
$lt是小于的意思。
如何建立索引呢?比如说下面这个查找:
>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"] u'BasicCursor' >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
建立索引:
>>> from pymongo import ASCENDING, DESCENDING >>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)]) u'date_-1_author_1' >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"] u'BtreeCursor date_-1_author_1' >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
连接聚集
>>> account = db.Account #或 >>> account = db["Account"]
查看全部聚集名称
>>> db.collection_names()
查看聚集的一条记录
>>> db.Account.find_one() >>> db.Account.find_one({"UserName":"keyword"})
查看聚集的字段
>>> db.Account.find_one({},{"UserName":1,"Email":1}) {u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'[email protected]'} >>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0}) {u'UserName': u'libing', u'Email': u'[email protected]'}
查看聚集的多条记录
>>> for item in db.Account.find(): item >>> for item in db.Account.find({"UserName":"libing"}): item["UserName"]
查看聚集的记录统计
>>> db.Account.find().count() >>> db.Account.find({"UserName":"keyword"}).count()
聚集查询结果排序
>>> db.Account.find().sort("UserName") #默认为升序 >>> db.Account.find().sort("UserName",pymongo.ASCENDING) #升序 >>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序
聚集查询结果多列排序
>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])
添加记录
>>> db.Account.insert({"AccountID":21,"UserName":"libing"})
修改记录
>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"[email protected]","Password":"123"}})
删除记录
>>> db.Account.remove() -- 全部删除 >>> db.Test.remove({"UserName":"keyword"})
相关推荐
liulufei 2020-07-05
lbyd0 2020-11-17
BigYellow 2020-11-16
sushuanglei 2020-11-12
我心似明月 2020-11-09
zhushenghan 2020-11-09
sunnnyduan 2020-10-16
不要皱眉 2020-10-14
xiaohai 2020-09-29
songxiugongwang 2020-09-22
萌亖 2020-09-17
LuckyLXG 2020-09-08
sdmzhu 2020-09-01
mkhhxxttxs 2020-09-16
xiaohai 2020-09-16
newcome 2020-09-09
jaylong 2020-08-19
大秦铁骑 2020-08-19