Tensorflow 同时载入多个模型的实例讲解
有时我们希望在一个python的文件空间同时载入多个模型,例如 我们建立了10个CNN模型,然后我们又写了一个预测类Predict,这个类会从已经保存好的模型restore恢复相应的图结构以及模型参数。然后我们会创建10个Predict的对象Instance,每个Instance负责一个模型的预测。
Predict的核心为:
class Predict: def __init__(self....): 创建sess 创建恢复器tf.train.Saver 从恢复点恢复参数:tf.train.Saver.restore(...) def predict(self,...): sess.run(output,feed_dict={输入})
如果我们直接轮流生成10个不同的Predict 对象的话,我们发现tensorflow是会报类似于下面的错误:
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status pywrap_tensorflow.TF_GetCode(status)) tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256,512] rhs shape= [640,512] [[Node: save/Assign_14 = Assign[T=DT_FLOAT, _class=["loc:@fullcont/Variable"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/cpu:0"](fullcont/Variable, save/RestoreV2_14)]] During handling of the above exception, another exception occurred: Traceback (most recent call last): File "PREDICT_WITH_SPARK_DATAFLOW_WA.py", line 121, in <module> pre2=Predict(label=new_list[1]) File "PREDICT_WITH_SPARK_DATAFLOW_WA.py", line 47, in __init__ self.saver.restore(self.sess,self.ckpt.model_checkpoint_path) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1560, in restore {self.saver_def.filename_tensor_name: save_path}) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 895, in run run_metadata_ptr) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1124, in _run feed_dict_tensor, options, run_metadata) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1321, in _do_run options, run_metadata) File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1340, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256,512] rhs shape= [640,512]
关键就是:
Assign requires shapes of both tensors to match.意思是载入模型的时候 赋值失败。主要是因为不同对象里面的不同sess使用了同一进程空间下的相同的默认图graph。
正确的解决方法:
class Predict: def __init__(self....): self.graph=tf.Graph()#为每个类(实例)单独创建一个graph with self.graph.as_default(): self.saver=tf.train.import_meta_graph(...)#创建恢复器 #注意!恢复器必须要在新创建的图里面生成,否则会出错。 self.sess=tf.Session(graph=self.graph)#创建新的sess with self.sess.as_default(): with self.graph.as_default(): self.saver.restore(self.sess,...)#从恢复点恢复参数 def predict(self,...): sess.run(output,feed_dict={输入})
相关推荐
Micusd 2020-11-19
xjtukuixing 2020-10-27
lybbb 2020-10-15
lybbb 2020-09-29
ghjk0 2020-09-24
yamaxifeng 2020-09-09
GDGYZL 2020-08-28
lybbb 2020-08-28
Icevivian 2020-08-25
comwayLi 2020-08-16
carbon0 2020-08-16
源式羽语 2020-08-09
sherry颖 2020-08-01
songbinxu 2020-07-19
sherry颖 2020-07-18
Niteowl 2020-07-15
Kindle君 2020-07-15
源式羽语 2020-07-04
源式羽语 2020-06-28