Python数据分析学习笔记之Pandas入门
pandas(Python data analysis)是一个Python数据分析的开源库。
pandas两种数据结构:DataFrame和Series
安装:pandas依赖于NumPy,python-dateutil,pytz
pip install pandas
DataFrame
DataFrame是一种带标签的二维对象。与excel表格或关系数据库中的表非常神似。可以用以下方式来创建DataFrame:
从另一个DataFrame来创建DataFrame
从具有二维形状的NumPy数组或者数组的复合结构来生成DataFrame
可以用Series来创建DataFrame
DataFrame可以从类似CSV之类的文件来生成
准备数据资料:http://www.exporedata.net/Dow... 下载一个csv数据文件。
from pandas.io.parsers import read_csv df = read_csv("WHO_first9cols.csv") print "Dataframe", df print "Shape", df.shape print "Length", len(df) print "Column Headers", df.columns print "Data types", df.dtypes print "Index", df.index print "Values", df.values
注意:DataFrame带有一个索引,类似于关系数据库中的主键。我们既可以手动创建,也可以自动创建。访问df.index
如果需要遍历数据,请使用df.values获取所有值,非数字的数值在被输出时标记为nan。
Series
Series是一个由不同类型元素组成的一维数组,该数据结构也具有标签。可以通过以下方式创建Series数据结构:
由Python字典来创建
由NumPy数组来创建
由单个标量值来创建
创建Series数据结构时,可以向构造函数递交一组轴标签,这些标签通常称为索引。
对DataFrame列执行查询操作时,会返回一个Series
from pandas.io.parsers import read_csv import numpy as np df = read_csv("WHO_first9cols.csv") #这里对DataFrame列进行查询操作,返回一个Series country_col = df["Country"] print "Type df", type(df) print "Type country col", type(country_col) print "Series shape", country_col.shape print "Series index", country_col.index print "Series values", country_col.values print "Series name", country_col.name print "Last 2 countries", country_col[-2:] print "Last 2 countries type", type(country_col[-2:]) #NumPy的函数同样适用于pandas的DataFrame和Series print "df signs", np.sign(df) last_col = df.columns[-1] print "Last df column signs", last_col, np.sign(df[last_col]) print np.sum(df[last_col] - df[last_col].values)
利用pandas查询数据
数据准备:pip install Quandl 或者手动从http://www.quandl.com/SIDC/SU... 下载csv文件。
import Quandl # Data from http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual # PyPi url https://pypi.python.org/pypi/Quandl sunspots = Quandl.get("SIDC/SUNSPOTS_A") print "Head 2", sunspots.head(2) print "Tail 2", sunspots.tail(2) last_date = sunspots.index[-1] print "Last value", sunspots.loc[last_date] print "Values slice by date", sunspots["20020101": "20131231"] print "Slice from a list of indices", sunspots.iloc[[2, 4, -4, -2]] print "Scalar with Iloc", sunspots.iloc[0, 0] print "Scalar with iat", sunspots.iat[1, 0] print "Boolean selection", sunspots[sunspots > sunspots.mean()] print "Boolean selection with column label", sunspots[sunspots.Number > sunspots.Number.mean()]
DataFrame的统计函数
describe、count、mad、median、min、max、,pde、std、var、skew、kurt
DataFrame分组与聚合
import pandas as pd from numpy.random import seed from numpy.random import rand from numpy.random import random_integers import numpy as np seed(42) df = pd.DataFrame({'Weather' : ['cold', 'hot', 'cold', 'hot', 'cold', 'hot', 'cold'], 'Food' : ['soup', 'soup', 'icecream', 'chocolate', 'icecream', 'icecream', 'soup'], 'Price' : 10 * rand(7), 'Number' : random_integers(1, 9, size=(7,))}) print df weather_group = df.groupby('Weather') i = 0 for name, group in weather_group: i = i + 1 print "Group", i, name print group print "Weather group first\n", weather_group.first() print "Weather group last\n", weather_group.last() print "Weather group mean\n", weather_group.mean() wf_group = df.groupby(['Weather', 'Food']) print "WF Groups", wf_group.groups #通过agg方法,可以对数据组施加一系列的NumPy函数。 print "WF Aggregated\n", wf_group.agg([np.mean, np.median])
DataFrame的串联与附加操作
数据库的数据表有内部连接和外部连接。DataFrame也有类似操作,即串联和附加。
函数concat()的作用是串联DataFrame,追加数据行使用append()函数。
例如
pd.concat([df[:3],df[3:]]) df[:3].append(df[5:])
pandas提供merge()或DataFrane的join()方法都能实现类似数据库的连接操作功能。默认情况下join()方法会按照索引进行连接,不过,有时候这不符合我们的要求。
数据准备:
tips.csv
EmpNr,Amount 5,10 9,5 7,2.5
dest.csv
EmpNr,Dest 5,The Hague 3,Amsterdam 9,Rotterdam
dests = pd.read_csv('dest.csv') tips = pd.read_csv('tips.csv') #使用merge()函数按照员工编号进行连接处理 print "Merge() on key\n", pd.merge(dests, tips, on='EmpNr') #用join()方法执行连接操作时,需要使用后缀来指示左、右操作对象。 print "Dests join() tips\n", dests.join(tips, lsuffix='Dest', rsuffix='Tips') #用merge()执行内部连接时,更显示的方法如下 print "Inner join with merge()\n", pd.merge(dests, tips, how='inner') #稍作修改便变成完全外部连接,缺失的数据变为NaN print "Outer join\n", pd.merge(dests, tips, how='outer')
处理缺失的数据
缺失的数据变为NaN(非数字),还有一个类似的符号NaT(非日期). 可以使用pandas的两个函数来进行判断isnull(),notnull(), fillna()方法可以用一个标量值来替换缺失的数据。
import pandas as pd import numpy as np df = pd.read_csv('WHO_first9cols.csv') # Select first 3 rows of country and Net primary school enrolment ratio male (%) df = df[['Country', df.columns[-2]]][:2] print "New df\n", df print "Null Values\n", pd.isnull(df) print "Total Null Values\n", pd.isnull(df).sum() print "Not Null Values\n", df.notnull() print "Last Column Doubled\n", 2 * df[df.columns[-1]] print "Last Column plus NaN\n", df[df.columns[-1]] + np.nan print "Zero filled\n", df.fillna(0)
处理日期数据
http://pandas.pydata.org/pand...
各种频率(freq)短码对照表:
B business day frequency
C custom business day frequency (experimental)
D calendar day frequency
W weekly frequency
M month end frequency
SM semi-month end frequency (15th and end of month)
BM business month end frequency
CBM custom business month end frequency
MS month start frequency
SMS semi-month start frequency (1st and 15th)
BMS business month start frequency
CBMS custom business month start frequency
Q quarter end frequency
BQ business quarter endfrequency
QS quarter start frequency
BQS business quarter start frequency
A year end frequency
BA business year end frequency
AS year start frequency
BAS business year start frequency
BH business hour frequency
H hourly frequency
T, min minutely frequency
S secondly frequency
L, ms milliseconds
U, us microseconds
N nanoseconds
import pandas as pd from pandas.tseries.offsets import DateOffset import sys print "Date range", pd.date_range('1/1/1900', periods=42, freq='D') try: print "Date range", pd.date_range('1/1/1677', periods=4, freq='D') except: etype, value, _ = sys.exc_info() print "Error encountered", etype, value offset = DateOffset(seconds=2 ** 63/10 ** 9) mid = pd.to_datetime('1/1/1970') print "Start valid range", mid - offset print "End valid range", mid + offset print pd.to_datetime(['1900/1/1', '1901.12.11']) print "With format", pd.to_datetime(['19021112', '19031230'], format='%Y%m%d') print "Illegal date", pd.to_datetime(['1902-11-12', 'not a date']) print "Illegal date coerced", pd.to_datetime(['1902-11-12', 'not a date'], coerce=True)
据透视表(pivot_table)
数据透视表可以用来汇总数据。pivot_table()函数及相应的DataFrame方法。
import pandas as pd from numpy.random import seed from numpy.random import rand from numpy.random import random_integers import numpy as np seed(42) N = 7 df = pd.DataFrame({ 'Weather' : ['cold', 'hot', 'cold', 'hot', 'cold', 'hot', 'cold'], 'Food' : ['soup', 'soup', 'icecream', 'chocolate', 'icecream', 'icecream', 'soup'], 'Price' : 10 * rand(N), 'Number' : random_integers(1, 9, size=(N,))}) print "DataFrame\n", df #cols指定需要聚合的列,aggfunc指定聚合函数。 print pd.pivot_table(df, cols=['Food'], aggfunc=np.sum)
相关推荐
Series是一种类似于一维数组的对象,由一组数据以及一组与之对应的索引组成。 index: 索引序列,必须是唯一的,且与数据的长度相同. 如果没有传入索引参数,则默认会自动创建一个从0~N的整数索引