Java排序算法总结(七):快速排序
快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。快速排序不稳定,O(log(n))的额外空间,时间复杂度为O(nlog(n)),不是自适应的。
快速排序(Quicksort)有几个值得一提的变种算法,这里进行一些简要介绍:
随机化快排:快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”
随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。
平衡快排(Balanced Quicksort):每次尽可能地选择一个能够代表中值的元素作为关键数据,然后遵循普通快排的原则进行比较、替换和递归。通常来说,选择这个数据的方法是取开头、结尾、中间3个数据,通过比较选出其中的中值。取这3个值的好处是在实际问题(例如信息学竞赛……)中,出现近似顺序数据或逆序数据的概率较大,此时中间数据必然成为中值,而也是事实上的近似中值。万一遇到正好中间大两边小(或反之)的数据,取的值都接近最值,那么由于至少能将两部分分开,实际效率也会有2倍左右的增加,而且利于将数据略微打乱,破坏退化的结构。
外部快排(External Quicksort):与普通快排不同的是,关键数据是一段buffer,首先将之前和之后的M/2个元素读入buffer并对该buffer中的这些元素进行排序,然后从被排序数组的开头(或者结尾)读入下一个元素,假如这个元素小于buffer中最小的元素,把它写到最开头的空位上;假如这个元素大于buffer中最大的元素,则写到最后的空位上;否则把buffer中最大或者最小的元素写入数组,并把这个元素放在buffer里。保持最大值低于这些关键数据,最小值高于这些关键数据,从而避免对已经有序的中间的数据进行重排。完成后,数组的中间空位必然空出,把这个buffer写入数组中间空位。然后递归地对外部更小的部分,循环地对其他部分进行排序。
三路基数快排(Three-way Radix Quicksort,也称作Multikey Quicksort、Multi-key Quicksort):结合了基数排序(radix sort,如一般的字符串比较排序就是基数排序)和快排的特点,是字符串排序中比较高效的算法。该算法被排序数组的元素具有一个特点,即multikey,如一个字符串,每个字母可以看作是一个key。算法每次在被排序数组中任意选择一个元素作为关键数据,首先仅考虑这个元素的第一个key(字母),然后把其他元素通过key的比较分成小于、等于、大于关键数据的三个部分。然后递归地基于这一个key位置对“小于”和“大于”部分进行排序,基于下一个key对“等于”部分进行排序。
代码实现: